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Abstract— In this work, we address fast and agile manoeuvre
control problem of unmanned aerial vehicles (UAVs) using an
artificial neural network (ANN)-assisted conventional controller.
Whereas the need for having almost perfect control accuracy for
UAVs pushes the operation to boundaries of the performance
envelope, safety and reliability concerns enforce researchers
to be more conservative in tuning their controllers. As an
alternative solution to the aforementioned trade-off, a reliable
yet accurate controller is designed for the trajectory tracking of
UAVs by learning system dynamics online over the trajectory.
What is more, the proposed online learning mechanism helps us
to deal with unmodelled dynamics and operational uncertain-
ties. Experimental results validate the proposed approach and
show the superiority of our method compared to conventional
controller for fast and agile manoeuvres, at speeds as high
as 20m/s. An onboard implementation of the sliding mode
control theory-based adaptation rules for the training of the
proposed ANN is computationally efficient which allows us
to learn system dynamics and operational variations instantly
using a low-cost and low-power computer.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are starting to play an
important role in transportation [1], manipulation [2], and
search and rescue [3]. The ability to fly in an agile and
aggressive manner is useful in tasks with time constraints,
in densely populated and cluttered environments, especially
in search and rescue scenarios. Similar to any other robotics
application, robustness and performance trade-off exists in
UAV applications where researchers mostly prefer safe and
robust controller tuning when dealing with more aggressive
controllers. In this work, we show that an artificial neural
network (ANN)-assisted control method, which enables fast
and aggressive manoeuvres, allows us to obtain accurate tra-
jectory tracking results without compromising the robustness
and safety in the system. We also demonstrate that although
the conventional controller – proportional-derivative (PD) in
this study – is not tuned thoroughly, the proposed adapta-
tion algorithm allows to learn online the system dynamics,
internal and external uncertainties, and improve the overall
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(a) Composite image showing agile manoeuvres in a zig-zag trajectory.
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(b) Control logic of the proposed approach.

Fig. 1. Control architecture for fast and agile UAV flight.

trajectory tracking performance throughout the fast and agile
manoeuvres.

In the literature, UAV operation near the boundaries has
always been an alluring research topic, like performing multi-
flips using a simple learning strategy and the first-principles
model [4]. In [5], a manoeuvre regulation perspective follows
a geometric path, as assigned, with a certain velocity. Since
the path to be followed is not a time-based reference state,
unlike in trajectory tracking, a linear quadratic regulator-
based controller ensures the exact path-following to perform
such space-dependent manoeuvres. As an alternative solu-
tion, the aerodynamic effects of blade flapping and thrust
variations on a rotor at higher angles of attack are studied
and used for developing control techniques for operating at
high-speed aggressive manoeuvres [6]. The authors present
a novel feedback linearization controller to take into account
such aerodynamic disturbances. A hardware solution to the
mentioned problem, used in [7], is the implementation of the
variable pitch rotors. This method expands the normal rotor



operation regime by varying the blade pitch which provides
better thrust vectoring to achieve agile UAV manoeuvres.

Feasible aggressive trajectories emulating constrained in-
door environment are designed in [8], [9]. The algorithm
generates trajectories in real-time such that it ensures safe
passage through corridors and satisfies constraints on veloc-
ities and accelerations. A nonlinear controller based on the
changing dynamics of the UAV and errors in the model is
developed which ensures the tracking of desired states in the
three-dimensional (3D) space. A simple model describing
the essential dynamics of the system is used in an iterative
learning algorithm to perform an aggressive motion [10]. The
knowledge obtained from the successful trajectories is used
to reduce the transients when performing similar subsequent
manoeuvres.

In lieu of the literature above, other groups analyze the
perception and planning aspects to enable agile navigation
using onboard sensors such as laser scanner with fixed-
wing aircraft [11], stereo cameras [12], a single camera and
IMU [13]. However, our work focuses on the control part
to cope with uncertainties and disturbances deriving from
unmodelled dynamics and external effects. We show that an
accurate time-based trajectory tracking for agile flights is
achieved in the outdoor environment, as seen from the com-
posite image in Fig. 1a, with steady wind gusts. Moreover,
the proposed ANN structure is computationally inexpensive
to be implemented on a low-cost onboard computer. The
performance of the ANN-assisted controller outmatches the
conventional PID controller.

The key aspects of this work can be enlisted as follows:
• To the best of our knowledge, this is the first time an

ANN is used for accurate trajectory tracking in high-
speed and agile manoeuvres.

• A comparison of the ANN with classical model-based
controllers (PID) is carried out showing the superiority
of the proposed approach.

• Outdoor real-time high-speed flight tests are performed
using the real-time kinematic global positioning system
(RTK GPS) for localization.

This work is structured as follows. In Section II, the
dynamic model of the coaxial hexacopter is given. Section
III gives the description of the control architecture of the
proposed controller. The experimental results are shown in
Section IV. A brief conclusion of this work is given in
Section V.

II. COAXIAL HEXACOPTER MODEL
In this study, a custom-made coaxial hexacopter with six

rotors attached to three arms is used as the experimental
platform. The differential thrust produced by each motor is
used for the basic control of the hexacopter. Figure 2 shows
the considered reference frames and sign conventions for
the forces (Fi), torques (τi), and rotational speeds (Ωi) of
the rotors, where i is the rotor number. The three rotors
on the top rotate clockwise and the bottom three rotate
counter-clockwise. A brief description of the dynamics and
kinematics of the coaxial hexacopter is presented in [14].

The world fixed inertial frame or Earth frame is FE =
{~xE , ~yE ,~zE} and the body frame is FB = {~xB , ~yB ,~zB}.
The dynamics of the system are defined by assuming the
UAV as a rigid body with origin at the centre of gravity of
the UAV. The rolling (τp), pitching (τq) and yawing (τr) mo-
ments, as shown in the figure, are maintanied by the rotors.
Considering the dynamics, the system is underactuated, since
there are four control inputs (T, τp, τq, τr) which can be
summarized as:

T = F1 + F2 + F3 + F4 + F5 + F6, (1)

where T is the total thrust produced by the six rotors at any
given time. The moments acting on the UAV with moment
arms l1 = l, l2 =

√
3
2 l and l3 = 1

2 l, are given by: τp
τq
τr

 =

 (F5 + F6 − F1 − F2)
√
3
2 l

(F3 + F4)l − (F1 + F2 + F5 + F6) 1
2 l

τ1 + τ3 + τ5 − τ2 − τ4 − τ6

 (2)

The position and orientation of the UAV are defined by
vectors,

[
x y z

]T ∈ R3 and
[
φ θ ψ

]T ∈ R3 in FE ,
respectively. The time derivatives of these state vectors gives
the translational and rotational kinematic equations, which
are described as: {

v = RvB

ω = TωB
, (3)

where v =
[
ẋ ẏ ż

]T
, ω =

[
φ̇ θ̇ ψ̇

]T
, vB and ωB are

linear and angular velocities given by vectors
[
u v w

]T ∈
R3 and

[
p q r

]T ∈ R3 in FB , respectively. R and T are
the rotation and transformation matrices, respectively.

The rigid body dynamic equations are derived using the
Newton-Euler formulation in the body frame and translate to
the final form as:{

mv̇B = F − (ωB ×mvB)

Iω̇B = τ − (ωB × I ωB)
, (4)

where m is mass and I is the inertia matrix and is generalized
by I = diag (Ix, Iy, Iz).
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Fig. 2. Coordinate reference frame and sign conventions.



External force F and torque τ are expressed as:

F =

0
0
T

−
 −mg sin θ
mg cos θ sinφ
mg cos θ cosφ

 , τ =

τxτy
τz

 , (5)

Thus, the kinematic and dynamic differential equations in
(3) and (4) describe the general mathematical model of the
hexacopter.

The forces and reaction torques exerted by the rotors,
rotating at Ωi angular velocities, can be formulated as:{

Fi = KFΩ2
i

τi = KτΩ2
i

, (6)

where KF and Kτ are termed as force and torque coefficients
and are modeled based on the motor-propeller combination.

III. CONTROL SCHEME

A. Artificial Neural Networks

A basic neural network imitates the working principle of
a human brain. ANNs are highly regarded for their learning
ability from input-output data. An inter-connected structure
of neurons receives an input, processes it and generates an
output depending on the input and internal state. In a general
ANN structure, the neurons are linked together, as shown in
Fig. 3. The neural network is organized into the input, hidden
and output layers. Between the output of each neuron and
the input to the next neuron weights (vi or wi) are applied,
which is updated in the learning process by a set of rules. The
evaluation of the distance from the sliding-mode manifold
determines these weights.

B. Learning-Based Controller

In the proposed control scheme, the ANN works in
parallel with a conventional PD controller which is used
as a feedback controller to provide sufficient time for the
initialization of the learning process of ANN [16]. Moreover,
ANN will learn the UAV dynamics and take over the control
responsibility of the system. With its adaptive learning rates,
ANN is very fast to learn and can instantaneously contribute
to a better performance, i.e., an accurate trajectory tracking.
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Fig. 3. Structure of the ANN.

The overall control input u to the system to be controlled is
defined by:

u = uPD − uANN, (7)

where uPD and uANN are the control signals produced by PD
controller and ANN controller, respectively. The PD control
law is written in the following form:

uPD = kpe+ kdė, (8)

where e and ė are the feedback error and its time derivative,
respectively, while kp and kd are some positive constants
corresponding to proportional and derivative gains, respec-
tively.

The position error e and its time derivative ė are the
two inputs provided to the proposed ANN controller, i.e.,
x =

[
e ė

]T
, which are the same inputs as to PD. One

output generates the control signal uANN, i.e., y = uANN.
The ANN architecture used for the design of the controller
in this work has: two input neurons (N1 = 2), one output
neuron (N3 = 1) and three neurons (N2 = 3) in the hidden
layer. The hidden layer defines the learning capabilities and
the complexity of the ANN. The choice of number of neurons
in the hidden layer is clarified from the simulation studies
in Section IV. One may note from Fig. 4 that the control
output u seems one-dimensional which can be misleading.
The same control structure is used to generate all the four
control signals described in (4), but only one is shown here
for the sake of simplicity and to avoid repetition.

The output control signal from ANN can be computed as
the weighted sum of each input:

uANN =

∑3
i=1 hiwi∑3
i=1 hi

=

3∑
i=1

h̄iwi, (9)

where h̄i is the normalized value of the output from the ith

neuron in the hidden layer:

h̄i =
hi∑3
i=1 hi

. (10)
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Fig. 4. Schematics of ANN-based controller.



The activation functions in (9) are linear. Based on the
control scheme in Fig. 4, it is assumed that the incoming
signals, e(t) and ė(t), and their time derivatives, ė(t) and
ë(t), cannot have infinite values [17]. Thus, they can be
considered bounded, i.e.:

|e(t)| ≤ Be
|ė(t)| ≤ Bė
|ë(t)| ≤ Bë

∀t, (11)

where the positive constants Be > 0, Bė > 0 and Bë > 0
are assumed to be some known values. Similarly, the weight
coefficient can be considered also bounded, i.e.:{

|wi(t)| ≤ Bw ∀t
|vi(t)| ≤ Bv ∀t

, (12)

where Bw > 0 and Bv > 0 are some positive constant. From
(11) and (12), it is evident that uANN(t) and u̇ANN(t) are also
bounded signals:{

|uANN(t)| ≤ Bu
|u̇ANN(t)| ≤ Bu̇

∀t, (13)

where Bu > 0 and Bu̇ > 0 are some known positive
constants.

C. Sliding Mode Control Theory-Based Learning Algorithm
A sliding mode control (SMC)-based parameter adaptation

scheme is used for the learning process of ANN. The
SMC framework as designed by first selecting a suitable
sliding manifold that will ensure desired system dynamics.
Moreover, it is desired to design a dynamical feedback adap-
tation mechanism or an online learning algorithm for ANN
parameters such that the sliding mode constraints/conditions
are fulfilled. SMC provides robustness to parameter uncer-
tainties and external disturbances – thus, is a widely used
control method for nonlinear systems applications. The zero
dynamics of the learning error coordinate uPD(t) can be
described as a time-varying sliding surface SPD by utilizing
the principles of the SMC theory [18]:

SPD(uANN, u) = uPD(t) = uANN(t) + u(t) = 0. (14)

By using (14), ANN is trained to become a nonlinear
regulator which assists the conventional PD controller in
parallel so that desired response can be obtained. Hence, the
sliding surface for the nonlinear system under control is:

S(e, ė) = ė+ λe, (15)

where λ > 0 is a parameter determining the reference trajec-
tory of the error signal. A sliding motion will appear on the
sliding manifold SPD(uANN, u) = uPD(t) = 0 after a finite
time th, if the condition SPD(t)ṠPD(t) = uPD(t)u̇PD(t) < 0
is satisfied for all t in some nontrivial semi-open subinterval
of time of the form [t, th) ⊂ (−∞, th).

The adaptation laws for the parameters of the considered
ANN are given as follows:{

ẇi = −α
∑N1

i=1 xi

N2|x| sign(uPD)

α̇ = γ|uPD|
, (16)

where α > 0 is the adaptive learning rate. The learning
error τ(t) will converge to a small neighbourhood of zero
during a finite time th for any arbitrary initial condition τ(0).
The reader can refer to [19] for the stability of the proposed
learning algorithm.

IV. RESULTS AND DISCUSSION

A. Simulation Studies

At first, the controller is tested in simulation to determine
the ANN’s meta-parameters like learning rates, number of
neurons in the hidden layer, and test different trajectories.
Gazebo simulator is used to simulate and model the UAV
because of its powerful physics engine. A thorough analysis
of the different number of neurons in the hidden layer
is done to observe its effects on computation times and
learning performance. The computation time is calculated
for the different number of neurons, in a simple circular
trajectory of 5m radius at desired speed of 1m/s, as shown
in Table I. Note that the time given in the table is the average
computation time (in ms) taken to run one loop of the ANN
controller. It is evident from the study that no significant
change is observed in terms of tracking improvement with
the increase in the number of neurons, albeit the computation
time multiplies.

B. Real-Time Experiments

The real-time tests are conducted on the coaxial hexa-
copter to validate the performance of the proposed controller.
A trajectory with two segments – zig-zag and straight line
– is chosen to make the UAV experience both agile and
fast manoeuvres at high speeds. In the first segment of the
trajectory, the UAV follows a zig-zag path for 55m along
x-axis and a periodic change of ±5m along y-axis at a
target speed of 5m/s. Then, in the second segment, the
UAV follows a straight line path at the target speed of
15m/s for another 70m. Extensive experimentations with
various learning rates of ANN were carried out. The results
of the ANN controller are then compared with two other
controllers. One is the widely known position controller of
the autopilot stack – Pixhawk – (referred as PIDFCU), while
the other a conventional PID position controller (referred as
PIDpos) sending attitude-setpoints – roll, pitch, yaw angles
– and thrust commands. The same experimental scenario is
repeated with a different controller each time. Notably, the
gains used for the PID controller are tuned; although not for
a specific test scenario. The tests are performed in an outdoor
environment with the use of RTK GPS, which provides
the position information with an accuracy of approximately

TABLE I
COMPARISON OF COMPUTATION TIMES AND EUCLIDEAN ERROR FOR

DIFFERENT NUMBER OF NEURONS IN HIDDEN LAYER.

Neurons 3 9 20 50 100 500

Time (ms) 0.092 0.127 0.143 0.245 0.427 2.57

Error (m) 1.55 1.52 1.56 1.55 1.58 1.69



5 − 20 cm. It is to be noted that the experiments were
conducted with average wind gusts of 5m/s.

Odroid XU4 is used as the low-cost and low-power
onboard computer which runs all the codes in C++ on
robot operating system (ROS) – thus, making the system
autonomous. The main constraint being the computation
power available on the onboard computer, desirable 3 sets of
neurons are selected from hardware-in-the-loop simulation to
ensure that sensible computation is utilised in real-time. All
the sensory feedbacks and controller outputs are fed to the
local position estimator of the Pixhawk, which estimates the
pose of UAV at 30Hz. The communication with the UAV is
achieved with ROS over a 5GHz wireless network.

Remark 1: As aforementioned, the ANN begins to learn
online from a pre-set learning rate, each time it is initialized
and applies a correction to the model-based techniques. This
allows us to keep the original benefits of the control, includ-
ing stability properties, while the proposed algorithm adds
effort to improve performance metrics. Thus, any particular
data set for a scenario is not fed to the controller to learn
any specific trajectory, rather the controller is designed to
perform better in any arbitrary condition. The main goal for
the ANN-assisted controller is to learn in a very short time
and perform better than the commonly used conventional
controllers – thus, a comparison with just an ANN control
is not suitable for this application. Moreover, implementing
a simple neural network (as used in this case) with just a
single hidden layer with very few neurons is not sufficient
to learn the complex system dynamics of the UAV. A more
complex and interlaced network of hidden layers might be
an approach, albeit it is not the scope of this work.

Prior to discussing the final results, a statistical comparison
of the controllers is worth mentioning, which also justi-
fies the above-mentioned Remark 1. Table II gives a brief
overview of the range of experiments carried out for the
different controllers numerous times on various trajectories.
In particular, a zig-zag path at high speed and a simple
circular trajectory at nominal speed are traced. The zig-zag
path is a pattern stretching 30m along x-axis and ±5m along
y-axis, while the latter is a circle of 2m radius circling three
times. The experiments are performed for each of the three
controllers in discussion and are repeated twice for sake of
repeatability. The average of each metric is calculated and
tabulated in Table II. This shows an overall improvement of
the proposed ANN-based controller and that the performance
is independent of trajectory chosen. The results from the key
experiment devised in this work are discussed next.

The results plotted in Fig. 5 show the trajectory tracking
of the UAV in 3D space over time. The wind gusts and the
high speeds of the UAV exert huge stresses on the rotors,
thus slight deviations from the trajectory are inevitable. Note
that all the iterations with different controllers were carried
out in similar outdoor conditions. The slight deviation in z-
axis towards the end of the trajectoryis because of the tilting
thrust vector of the UAV, reducing the vertical component
of thrust compared to the weight of the UAV. As seen from
the top view of the trajectory in Fig. 6, that the maximum

TABLE II
STATISTICAL COMPARISON OF EUCLIDEAN ERROR, MEAN ABSOLUTE

ERROR (MAE), AND STANDARD DEVIATION (σ).

Trajectory Controller Euc. error (m) MAE (m) σ

Zig-zag
PIDFCU 1.331 5.378 2.178

PIDpos 1.022 4.942 1.834

ANN-PD 0.861 4.550 1.721

Circle
PIDFCU 1.147 1.776 0.396

PIDpos 1.042 1.617 0.542

ANN-PD 0.511 0.757 0.299

Fig. 5. Real-time trajectory tracking of the UAV.

Fig. 6. Top view and tracking error of the considered controllers.

deviation from the trajectory in case of ANN is about 1m
and 5m in any direction for the zig-zag and straight-line
parts, respectively. However, for PIDFCU and PIDpos it is
about 2.5m and 2m for zig-zag and 13m and 9m for straight-
line parts, respectively. Moreover, it is seen that even at high
speeds and very sharp turns, ANN is tracking the trajectory
to the closest point on the bends.

In the trajectory tracking problem, the Euclidean error is
usually calculated to determine the controller’s performance,
but it may penalize the algorithm as it takes into account the
time delay in following the trajectory and not how accurately



it is following [20]. Thus, the overall tracking error in x, y,
and z axes, plotted in Fig. 6, shows how closely or accurately
the actual path is followed despite such tight constraints.
The improvement achieved by ANN in terms of tracking
error accuracy is 63% and 60% compared to PIDFCU and
PIDpos, respectively. Even on the straight-line part of the
trajectory, it converges to the actual trajectory despite the
initial deviation. Considering the high speeds and attitude
angles attained during the entire 155m long trajectory, the
error for the ANN is significantly smaller. Two crests are
seen on the plot of tracking error towards the end; first is
the straight-line segment of the trajectory, while the second
crest is caused due to the trajectory pattern. The UAV is to
come to a halt at the end of the straight path when it is
traveling close to 18m/s, and physically it is not possible
for the UAV to stop in an instant – thus, the overshoot at the
end and then the UAV converges to hover states. The ground
speed achieved for the different controllers is compared in
Fig. 7. The ANN is the fastest to accelerate and complete
the trajectory, as shown in the acceleration plot in Fig 7.
The ANN-assisted controller is able to maintain stable flight
while reaching peak velocities of 18m/s (and above) and
attitude angles of 45◦, during the trajectory. Highest average
speeds are observed for the ANN during the zig-zag path as
ANN follows the trajectory to minimize the tracking error.

Overall, it is shown that ANN accelerates faster to follow
the desired trajectory and results in the best trajectory track-
ing among the three controllers. ANN’s learning capability
is able to minimize the tracking error over time and provide
superior performance. The mean absolute tracking error for
each of the three controllers along with the maximum speed
and acceleration attained are given in Table III. The exper-
imental video is available at https://www.dropbox.
com/s/sm5ggrt7jg3dk67/video.mp4.

V. CONCLUSIONS

In this work, an ANN-based controller is proposed to
perform three-dimensional aggressive manoeuvres of UAVs.
The real-time tests were carried out in the outdoor environ-
ment using the RTK GPS for localization. We show that

Fig. 7. Ground speed and acceleration of different controllers.

the controller is robust and can be implemented onboard
UAV with limited computational resources. Two scenarios
are tested in the experiments: agile zig-zag manoeuvres
and straight-line fast flight. The ANN controller’s trajectory
tracking performance is outstanding as compared to con-
ventional PID controllers with about 60% of improvement.
Highest acceleration is observed in case of ANN showing
that it is the fastest to reach high-speed and complete the
trajectory. The experiments were repeated several times and,
on each occasion, ANN outperformed the PID controllers,
which shows the repeatability of the approach. The coaxial
hexacopter used is tested to its physical limits while reaching
velocities as high as 20m/s.
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