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h i g h l i g h t s
� Artificial neural network used to predict effect of H2 starvation of a fuel cell.

� Artificial neural network trained with long-term electrochemical data.

� First application: simulation of different long-term voltage decreases.

� Second application: fuel cell virtually kept constant after H2 starvation.

� Results showed safe operational voltage between 0.6 and 0.51 V for stable cycling.
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Degradation caused by H2 starvation is a typical reason for a limited lifetime in high-

temperature polymer electrolyte membrane fuel cells (HT-PEM FC). Here, a long short-

term memory (LSTM) artificial neural network (ANN), trained on experimental electro-

chemical data from a long-term H2 starvation/regeneration routine, was used to predict the

effect of H2 starvation.

Inafirst application,differentvoltagedecreasesweresimulated,whichFCs typicallyexhibit

during starvation/regeneration routines. The results of three simulation scenarios (3, 5 and

10 mV decrease per regeneration step) showed that critical resistances appeared at output

voltages of 0.51, 0.49 and 0.48 V, respectively (compared to the reference voltage of 0.6 V).

In a second application, the same FC was virtually set to continue to operate normally

(i.e., under regeneration conditions) at certain degrees of starvation, after which voltage

was virtually kept constant at 0.48, 0.50 and 0.51 V. For 0.48 and 0.50 V, all simulated re-

sistances fluctuated critically, which corresponded well to experimental data. However, for

0.51 V all simulated resistances never reached critical values. Hence, a safe operational
try, Carl von Ossietzky University, 26129, Oldenburg, Germany.
oldenburg.de (K. Yezerska).
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voltage range between 0.6 and 0.51 V is suggested for stable continued FC cycling, which

would prevent the occurrence of more severe (irreversible) degradation.

© 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

High-temperature polymer electrolyte membrane fuel cells

(HT-PEM FCs) operate at ca. 160 �C [1], which offers many

benefits. These are improved cathode kinetics, which include

effects of temperature on reference potential, open-circuit

voltage, the Tafel slope [2,3], exchange current density, oxy-

gen transport and improved catalyst tolerance to CO [4e6] as

well as improved water management and gas transport [7,8].

The performance of HT-PEM FCs has been widely studied, and

a general overview of the technology is given in Ref. [9]. The

key performance of each power source device is its lifetime

(e.g., durability). Therefore, to extend and predict the lifetime

of the HT-PEM FC, various degradation phenomena must be

studied in detail, while lifetime predictions should be based

on reliable modelling.

Background information on electrochemical characterization
of FCs

A simple way to describe FC behaviour is given by its output

voltage evolution. The basic output voltage Vcell produced by a

single FC [10,11] is as follows:

Vcell ¼ ENernst - Vact - Vohmic - Vcon (1)

whereas ENernst is the thermodynamic potential, Vact is the

activation voltage, Vohmic is the ohmic voltage and the Vcon is

the concentration voltage.

One of the typical lifetime limitations of an HT-PEM FC is

H2 starvation (fuel undersupply). Degradation mechanisms

due to H2 starvation are described in detail in Ref. [12]. TheHT-

PEM FC lifetime prediction due to the H2 starvation may be

based on the voltage response after various kinds of starva-

tion/regeneration routines. For example, Zhou et al. [8] applied

an accelerated degradation test with 19 starvation steps,

where the anodeH2 stoichiometry was cycled between 3.0 and

0.8 during starvation every 2 min (at constant cathode stoi-

chiometry of 3.0). The stoichiometry factor is based on the

ratio between the available gas at the inlet and the required

gas necessary for the reaction. The voltage decreased from

typically 0.6 V to ca. 0.2 V, which translates to a decrease by ca.

11 mV after each starvation step. A less intense voltage

decrease was observed by Yezerska et al. [12], who cycled the

H2 stoichiometry between 1.5 and 1.0 (starvation) every

20 min, at a constant cathode stoichiometry of 9.5. After 55

starvation steps voltage decreased from initially 0.6 Ve0.14 V,

which translates to a decrease of only 1mV for each starvation

step. Hence, the lower voltage decrease may have likely been

due to fewer variations in H2 stoichiometries as well as longer

regeneration time.
Fuel cell durability limitations may be described with sig-

nificant deviations in externally measured currents or exter-

nally measured resistances. The latter can be determined

using electrochemical impedance spectroscopy (EIS) which is

a non-destructive in-situ technique [13]. Compared to other

electrochemical methods, EIS offers the possibility to separate

between different FC part outputs (e.g., anode and/or cathode)

yielding detailed information on both, causes and locations of

degradation.

The experimental results for this paper were taken from

literature [12,14] in which degradation phenomena occurred

during 122 starvation/regeneration steps. Hence, the

empirical voltage, current and resistance data are here used

to model and predict FC operation under H2 starvation

using ANN, which as the dynamic modelling tool is

important for analysis, simulation, monitoring, and system

control. To the best of our knowledge, this is the first work

in the literature in which ANN is used to model the

behaviour of HT-PEM FCs subjected to starvation/regenera-

tion routines.

Basics on artificial neural networks and modelling
approaches of FCs

Nowadays ANNs represent an important and constantly

expanding field within artificial intelligence (AI) [15]. The un-

derlyingmathematical models are inspired by the functioning

of biological neural networks and consist of a set of simple

processing units, called neurons, which are interconnected by

links, called synapses.

Hence, ANN learns from the training samples by adjusting

the synaptic weights of the connections between neurons [16].

Any ANNs may be classified according to different criteria

such as (i) topology: single or multilayer, (ii) type of learning:

supervised or unsupervised, and (iii) type of connection be-

tween layers: feed-forward or feedback [17]. In a general

single-hidden-layer ANN, the neurons are organized in (i)

input layer, which receives the data, (ii) hidden layer, which

embeds the knowledge of ANN, and (iii) output layer, which

returns the ANN's result. Usually, ANNs reduce the need for

feature engineering which is one of the most time-consuming

tasks in machine learning for data training [18]. Therefore,

ANNs are ideal for situations that require approximating a

function that depends on inputs which nonlinearly connects

to the output [19] (Fig. 1) [20,21].

The optimum number of neurons in the hidden layer is

unknown and depends on the amount of empirical data. The

number of neurons in the hidden layer significantly influences

the capability of the network to generalize from training data

[22]. A small amount of neurons lead to poor network training

(underfitting) while a high amount of neurons leads to over-

training (overfitting) [23].
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Fig. 1 e Structure of the proposed ANN architecture, with a) input layer, b) hidden layer and c) output layer.
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FC modelling is typically based on numerous complex

physicochemical equations and the task of ANN is to learn

this complex model [20,21,24,25]. For example, Akkaya et al.

[24] developed a solid oxide FC model based on an ANN

approach for the FC performance prediction. Laribi et al. [25]

defined a method to assess the impacts of relative humidity

and operating time-based on EIS datawhile Shao et al. [20] and

Mohammadi et al. [21] presented a fault diagnosis method for

FC. Xie et al. [26] proposed a prognostic method, which allows

useful life estimation and short-term degradation prediction.

Recently, Gu et al. [27] proposed flooding fault diagnosis of FC

using LSTM networks. Such a method has better performance

in diagnose/pre-diagnose of FC.
Fig. 2 e Flow chart of data evaluation of a given voltage value (a),

test (c), DRT analysis (number of processes) (d), corresponding d

obtain resistance values (e).
Different operation conditions and the complexity of the

FC impede the calculation of a precise voltage decrease under

H2 starvation. Therefore, FC modelling remains challenging.

In this study, to train and fit ANN, we used the empirical data

from Yezerska et al.’s [12] long-term FC starvation experiment

such as resistance values calculated from EIS spectra, output

voltage, current as well as time. First, three scenarios ac-

cording to the intensity of any given starvation procedure

were developed, which are reflected by different voltage de-

creases according to those cited above. The goal was to predict

when resistances become critically high so that any FC cannot

continue to run stable. Second, for the FC used in Ref. [12]

three scenarios were simulated after the starvation was
the corresponding EIS spectra (b), evaluated KeK validation

ata to be fitted with an equivalent circuit model ECM to

https://doi.org/10.1016/j.ijhydene.2022.06.254
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virtually halted and set to run stable under prolonged regen-

eration conditions. This helps to recognize the voltage, under

which the starvation so far only produced little (reversible)

degradation and FC would continue to run in a stable mode.

Hence, with our first modelling approach operational strate-

gies may be optimized to prevent FC lifetime reduction.
Experimental setup and data collection

In this study, ANN is trained on empirical data (resistances,

voltage, current and time) from a G77 membrane electrode

assembly (MEA, Dapozol® Danish Power Systems®) (Yezerska

et al. [12,14]). The voltagemeasurements were performed on a

FuelCon AG (Evaluator-C 70316) test station, the current was

measured via density distribution device (Sþþ Simulation

Services®) and EIS spectra were generated using the poten-

tiostat Ametek Solartron Metrology®. For details on the

technical setup see Supplementary Fig. S1 while necessary

details are described in the following.

The FCs were cycled in a routine with alternating H2 star-

vation and regeneration steps, with gas stoichiometries of

lA¼1.0,lC¼9.5at 0.3A/cm2 (starvation) andlA¼1.5,lC¼9.5at

0.4A/cm2 (regeneration). The intendedoversupply ofO2 avoids

any influences from the cathodic side of the FC for clear sepa-

ration of degradationphenomena on the anode side. The latter

is referred to as a ‘reference condition’. With an increasing

number of starvation steps increasing anode and cathode

degradation phenomena occurred. Here, however, electro-

chemical data from the regeneration steps are used since

under reference conditions the FC is expected to operate under

stable conditions, and any (irreversible) degradation can only

be detected during regeneration by electrochemical means.

Both, output voltage (Fig. 2a) and current were measured

each minute during the operation. The current flow field on

the anode side of the FC was placed on the current density

distribution device (Sþþ Simulation Services®). The Sþþ unit

contains 100 points (intercepts) [14]. The sum of 100 points

(current values) is recorded simultaneously to voltage and is

typically equal to the applied test station current, being 8.46 A

during regeneration (Fig. S1).

The simultaneously measured EIS data were collected in

the frequency range of 10�1 to 104 Hz with an amplitude of

10 mV. The evaluation of EIS data included DRT analysis

(Distribution of Relaxation Times) [28], Kramers-Kronig (KeK)

validity test [29,30] and EIS data fitting to an electrical circuit

model (ECM) [12] as shown in Fig. 2bee. Hence, these elec-

trochemical data form the base of the inputs to ANN (Fig. 2f).

The EIS spectra of the 2nd, 10th and 18th minute of each

regeneration step were chosen for evaluation. To validate the

quality of the obtained EIS spectra the KeK validity test was

applied using the freely available MATLAB application Lin-KK

Tool. If the relative residuals are within the range of ± 1%, the

impedance data fulfils the Kramers-Kronig relation [5]. In this
work, the residuals of the KeK valid EIS spectra were found

within the range ± 0.6% (Figs. S2eS9). Our conservatively

chosen test range ensured providing high quality EIS data at a

sufficiently high rate. DRT analysis, which serves to evaluate

the number of processes during the FC operation was done

with freely available MATLAB application DRT tools. Each

process is typically attributed to specific frequency ranges,

which are common for the underlying electrochemical pro-

cesses. Among those are ohmic resistivity (RU) at frequencies

>100 Hz, charge transfer kinetics of the anode (high frequency

(Rhf) > 100 Hz) and cathode (intermediate frequency (Rif) ~ 10-

e100 Hz) as well as mass transport (low-frequency range

<1 Hz) [31,32]. The resistance Rhf is the sum of all processes

which typically occur at the anode and Rif at the cathode.

Consequently, all spectra are either (1) spectra with a cor-

rect EIS response shown by the semi-circle in the Nyquist plot

as well as a valid KeK test or (2) spectra with incorrect EIS

response and/or an invalid KeK validity test. To evaluate the

resistance values the EIS spectra from the group (1) were fitted

to an ECM with the ZView® software. In this study, only

resistance and no capacitance values (CPEhf and CPEif) are

presented because the calculation of these values is much

more complex, needs further understanding and is beyond

the scope of this contribution.
Process modelling with long short-term memory
network

Long Short-Term Memory (LSTM) networks are a type of ANN

capable of learning order dependence in sequence prediction

problems [33,34]. This behavior is required in composite

problem domains like complex chemical processes, such as

FC starvation processes. While data fitting methods do not

have internal memory and, consequently, they are agnostic

with respect to the state of the process, curve fitting methods

will not be able to learn and approximate the dynamical

model of the FC starvation process.

As any other type of ANN, LSTM network is organized ac-

cording to [35,36] (see Fig. 3):

- input layer, which takes the input variables (i.e., voltage, in

our case)

- hidden layer, which encodes the complex dynamics (i.e.,

chemical processes inside FC)

- output layer, which returns the output variables (i.e., RU,

Rhf and Rif resistance, in our case)

Note that the data related to measured currents are not fed

into the network since current is a function of voltage and

provides redundant information. Data pretreatment or data

engineering processes determine which features might be

useful in training a model. Such process is commonly known

as feature engineering. Feature engineering is the process of

https://doi.org/10.1016/j.ijhydene.2022.06.254
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Fig. 3 e General structure of the LSTM network, which consists of a) the input data (experimental data), b) LSTM and c)

output data (prediction).
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using domain knowledge to select and transform the most

relevant variables from raw data when creating a predictive

model.

According to the KeK validity test, invalid EIS spectra are

marked as RK-K invalid for all three evaluated resistances (RU, Rhf

and Rif). Invalid RK-K invalid values are empirically set to the

ANN labels as:

RK-K invalid ¼ max(R) þ 2D, (2)

where D ¼max(R) emin(R), as an empirical choice. Such an

approachmay help to recognize faster the changes in the ANN

simulations due to degradation. For the samples with invalid

impedance values, at the stage where the fuel cell (FC) stops

operating due to the lack of hydrogen (hydrogen starvation)

the impedance values are substituted with double of the

maximumvalue of the corresponding impedance according to

R ¼ max(R) þ 2 (max(R) e min(R)) (3)

The original data were measured at irregular intervals. To

generate the samples at regular intervals and to augment the

number of training samples, the piecewise cubic Hermite

interpolating polynomialmethodwas employed at a sampling

rate of 1 min for two purposes: interval normalization

and data augmentation. The experimental samples were

measured at irregular intervals which cannot be used to learn

the dynamicalmodel of the system. In addition, increasing the

number of samples allowed us to havemore balanced training

and testing sets.

The samples in the dataset were standardized to obtain

normal distribution (m ¼ 0, s ¼ 1). The normalization is

strongly recommended for a dataset that has numeric fea-

tures covering distinctly different ranges. When different
features have different ranges, gradient descent can "bounce"

and slow down convergence. Normalization is also recom-

mended for single numeric features that cover a narrow or

wide range (here: low Rhf and Rif).

Then, the dataset was split into a training subset with 80%

of samples and a testing subset with 20% of samples. As

shown in Fig. 2, the architecture of the LSTM network has one

input neuron, corresponding to the FC's voltage, one hidden

layer with 100 neurons, and three output neurons, corre-

sponding to RU, Rhf and Rif resistances. The number of hidden

neurons has been selected heuristically. This number is a

trade-off between learning capability and generalization

capability. A too-small number of hidden neurons will result

in the inability to learn the process; while a too-large number

of hidden neurons will result in overfitting where the network

will just memorize the training samples.

For the training process, Adam optimizer was used as the

solver, the learning rate was set to 0.01, a decay rate of

gradient moving average of 0.9 and the number of training

epochs was bounded to 1000. Once the network is trained, it

can be used for predicting the behaviour of FC at various levels

of voltage.
Results and discussions

Before discussing the results of the ANN application, the

experimental data from Yezerska et al. [12] for the eight days

of MEA regeneration cycling is briefly reviewed here. As

shown in Fig. 4a, the voltage decreased from 0.6 V to 0.3 V on

day 7 with increasing fluctuations. By contrast, the current

remained stable at ca. 8.6 A while fluctuation (positive and

negative) began on day 5 but was notably expressed on day 7

(Fig. 4b). Further, RU fluctuated between 0.015 U and 0.028 U

https://doi.org/10.1016/j.ijhydene.2022.06.254
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Fig. 4 e Experimental data for a) voltage, b) overall current, c) ohmic resistance RU, d) anode resistance Rhf, e) cathode

resistance Rif. Empty circles indicate invalid data according to the Kramers-Kronig validity test, while the pink area

shows the region of critical resistances (RK-K invalid) as defined according to equation (2). Experimental data from

Yezerska et al. [12]. (For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.)
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(except for day 1; Fig. 4c), while Rhf increased from 0.0005 U to

0.009 U (Fig. 4d) and Rif increased from 0.005 U to 0.009 U

(Fig. 4e). From day 4, the number of RK-K invalid strongly

increased, while day 7 included the highest number of RK-K

invalid data points. Hence, only a few data could be evaluated

and used for the ANN data matrix.

In summary, the experimental results showed an overall

voltage decrease of ca. 1 mV per regeneration step (Figs. 4a

and 5a). However, even more intense voltage decreases were

observed during starvation/regeneration routines by other

authors (see Introduction). Hence, ANN was trained with the

discussed experimental data, and for the study of the behavior

of resistances during more intense voltage decreases, three

voltage decreases of 3 mV, 5 mV and 10 mV per regeneration

step were applied, respectively. Note that, as an initial

approach, we only used average voltage decreases without

considering fluctuations.
The results show that in scenario 1 (decrease of 3 mV/

regeneration step) simulated RU, Rhf and Rif reach RK-K invalid at

the end of day 2 (Fig. 5b, c, d), which translates to a voltage of

0.51 V short of becoming critical (Fig. 5a). Further, all simu-

lated resistances values rapidly fluctuate between a critical

and non-critical state (Fig. 5b, c, d) during the first half of day 3.

In scenarios 2 and 3 (decrease of 5 mV and 10 mV) simulated

RU, Rhf and Rif reach RK-K invalid earlier on day 2 (after ca. 1250

and 1000 min), which translates to voltages of 0.49 V and

0.48 V, respectively. For scenario 2, we note similar rapid

fluctuations, however, over a shorter period than in scenario

1, while such rapid fluctuations are absent in scenario 3

(Fig. 5b, c, d).

Hence, from these scenarios, it can be concluded that, ac-

cording to the voltage decrease, the critically high RK-K invalid

values are reached at a voltage range between 0.48 and 0.51 V.

It is noteworthy that in all scenarios critical RK-K invalid values

https://doi.org/10.1016/j.ijhydene.2022.06.254
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Fig. 5 e Experimental data (black dots) of Yezerska et al.’s [12] FC and simulated data (red, blue and green lines) for three

scenarios (#1, 2 and 3) according to applied voltage decreases of 3 mV, 5 mV and 10mV per regeneration step, a) voltage (see

Fig. 4), b) ohmic resistance (RU), c) high-frequency resistance (Rhf) and d) intermediate frequency (Rif) resistance. The pink

area shows the region of critical resistances (RK-K invalid) as defined according to equation (2). (For interpretation of the

references to color in this figure legend, the reader is referred to the Web version of this article.)
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are reached during day 2. This contrasts with our experi-

mental data, where critical RK-K invalid values were obtained

much later, essentially on day 4. Hence, any voltage decreases

higher than 1 mV per regeneration step is critical and could

lead to a premature increase in resistances. We further note

that the more intense the voltage decrease is, the less likely

the FC switches between a critical and non-critical state. This

could mean that more critical (i.e., irreversible) degradation

may be reached earlier and more instantaneously, which is a

realistic outcome of our simulation.

The aim of our next simulation is to predict whether the FC

described by Yezerska et al. [12] would be capable to continue

to operate normally (i.e., under regeneration conditions) after

a certain degree of starvation. For this, wemodelled resistance

behaviors at randomly chosen voltage values of 0.48 V, 0.50 V

and 0.51 V as shown in scenarios 4, 5, and 6 (Fig. 6).

In scenario 4 (output voltage of 0.48 V), all resistances

rapidly increase and reach critical values in the first half of day
4 after ca. 2450 min (Fig. 6). This is roughly in line with the

appearance of the first significant number of invalid re-

sistances.Wefurthernotean increase inall resistancesalready

on day 3 (after ca. 2000 min), however, this increase remains

uncritical. It nevertheless matches the first two invalid re-

sistances on day 3 and, more importantly, the onset of carbon

oxidation at the anode which has been inferred from DRT

spectra [12]. Hence, our simulation suggests that the FC,which

hassuffered fromstarvationandcontinues to runonlyat0.48V

likely remains in a critical, unreliable state from day 4 on.

In scenario 5 (0.50 V), all resistances are elevated and

fluctuate between critical and uncritical values on day 3

(Fig. 6). By the end of day 2, all resistances are critically

high. The strong fluctuation suggests an insecure

behavior of the FC, therefore 0.50 V reflects a limiting

scenario.

By contrast, in scenario 6 (0.51 V) although all resistances

are elevated as well, they never reach critical values. This

https://doi.org/10.1016/j.ijhydene.2022.06.254
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Fig. 6 e Experimental data (black) of Yezerska et al.’s FC (reference) and simulated data for three scenarios under

regeneration conditions at constant voltage at 0.48 V (yellow), 0.50 V (magenta) and 0.51 V (blue), a) voltage, b) ohmic

resistance (RU), c) high frequency resistance (Rhf), d) intermediate frequency (Rif) resistance. The pink area shows the region

of critical resistances (RK-K invalid) as defined according to equation (2). (For interpretation of the references to color in this

figure legend, the reader is referred to the Web version of this article.)
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suggests that starvation so far only produced little (reversible)

degradation and that the FC would continue to run in a stable

mode.
Conclusions and Outlook

In this work, a long short-term memory ANN modelling

approach for HT-PEM FCs is discussed. The training of the

ANN was based on electrochemical data such as resistances

calculated from EIS-DRT spectra, voltage, and time. These

values were simultaneously measured at high resolution

during a long-term fuel (H2) starvation/regeneration FC

cycling routine over 8 days [12]. The calculated resistances

were chosen after rigorous quality control determined by a

Kramers-Kronig validity test to ensure an accurate data

modelling.

In the first ANN application, different voltage decreases,

which FCs exhibit during starvation/regeneration routines,

were simulated. For this, the voltage decreases of 3 mV, 5 mV

and 10 mV per regeneration step were applied in three

simulation scenarios. The results showed that (i) critical re-

sistances appeared for output voltages of 0.51 V, 0.49 V and

0.48 V, respectively (compared to the usual reference voltage

of 0.6 V), and (ii) as expected, the more intense the voltage
decrease was the sooner these critically high resistances

were formed. For example, a voltage decrease of 10 mV

would result in severe degradation already on day 2 of

cycling.

In the second ANN application, the FC tested by Yezerska

et al. [12] was virtually set to continue operating normally, i.e.,

under regeneration conditions, after certain degrees of star-

vation. Therefore, the starvation was virtually stopped by

keeping the voltage constant at 0.48 V, 0.50 V and 0.51 V. At a

voltage of 0.48 V, all simulated resistances rapidly increased

and reached critical values on day 4, in line with experimental

data. At a voltage of 0.50 V all simulated resistances fluctuated

continuously between critical and uncritical values on day 3

suggesting a rather unreliable behaviour of the FC with an

unpredictable outcome. However, at a voltage of 0.51 V all

simulated resistances were slightly higher but never reached

critical values. Hence, our results suggest a secure voltage

range between 0.6 V and 0.51 V for a stable FC cycling.

This study showed that an LSTM ANN is a reliable tool for

predicting the stress behaviour of a HT-PEM FC. Possible re-

finements of our modelling approach would be to include

fluctuations in the voltage decrease, with ranges according to

experimental data. Further, data can be collected from

different FCs under starvation and the training approach

could be optimized using a k-fold cross-validation.
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