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Abstract

In this paper, a Levenberg-Marquardt inspired sliding mode control theory
based adaptation laws are proposed to train an intelligent fuzzy neural net-
work controller for a quadrotor aircraft. The proposed controller is used to
control and stabilize a quadrotor unmanned aerial vehicle in the presence of
periodic wind gust. A proportional-derivative controller is firstly introduced
based on which fuzzy neural network is able to learn the quadrotor’s control
model on-line. The proposed design allows handling uncertainties and lack
of modelling at a computationally inexpensive cost. The parameter update
rules of the learning algorithms are derived based on a Levenberg-Marquardt
inspired approach, and the proof of the stability of two proposed control laws
are verified by using the Lyapunov stability theory. In order to evaluate the
performance of the proposed controllers extensive simulations and real-time
experiments are conducted. The 3D trajectory tracking problem for a quadro-
tor is considered in the presence of time-varying wind conditions.
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1. Introduction

The unmanned aerial vehicle’s (UAV’s) sector is becoming the fastest grow-
ing sector of the aerospace industry. Whether it is from increasing interest in
civilian or military fields such as search and rescue operations (Sun et al.,
2016), traffic surveillance (Zhou et al., 2015) and forest management (Wallace
et al., 2014), UAVs have drawn tremendous attention from researchers and
practitioners over the last few years. In particular, vertical take-off and land-
ing (VTOL) UAVs have been the main interest of active research among the
class of versatile flying robotic platforms due to their exceptional movement
agility, relatively small size, and capability to hover and operate in cluttered
environments. These advantages of VTOL UAV provide a cheap solution to
dull, dirty and hazardous missions in many fields, such as target tracking
(Vanegas et al., 2016), 3D terrain reconstruction (Torres et al., 2016), agricul-
ture mapping (Perez-Ortiz et al., 2016), wildlife protection (Olivares-Mendez
et al., 2015) and emergency evacuation (Sarabakha and Kayacan, 2016). In
addition, apart from individual missions VTOL UAVs, e.g., quadrotors, have
been widely exploited to perform cooperative tasks such as crop monitoring
(Valente et al., 2011), assembly and structure construction (Alejo et al., 2014),
and payload transportation (Michael et al., 2011).

However, the design of the flight control system is still a fundamental prob-
lem for multirotors, and for quadrotors in particular. Since quadrotor is an
underactuated system and it has a constant fixed blade pitch on its propellers,
its motion can only be achieved by altering the angular speed of each ro-
tor. Thus, the controller design is not a straightforward task as its dynamics
is highly nonlinear and underactuated. Furthermore, in typical surveillance
operations, the designed controller should provide precise trajectory tracking
capabilities to enhance UAV’s flight safety and task survivability. However,
the case of having uncertain working conditions and lack of modelling impose
additional difficulties in the controller design. Hence, a robust and stable per-
formance is required from designed controller regardless of unforeseen internal
and external uncertainties.

There are two approaches to control the UAVs: model-based, which needs
an exact model of the system, and model-free, which does not need an exact
model of the system. Proportional-integral-derivative (PID) (Eresen et al.,
2012), dynamic feedback linearization (DFL) (Hua et al., 2013), linear-quadratic
regulator (LQR) (Dong et al., 2015), and model predictive control (MPC)
(Hofer et al., 2016) are the examples of the most widely used model-based
controllers. The aforementioned controllers deliver a good balance between
implementation cost, control performance and operational complexities. On
the other hand, the performance of PID and LQR is constrained by operating
regions where nonlinearities are negligible, while in the case of MPC and DFL,
a precise system model is required. However, in many UAV’s applications, a
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priori knowledge about the process is just approximated. Therefore, the per-
formance of these systems deteriorates because of the lack of modelling and
both external and internal uncertainties.

The modelling of a highly complex nonlinear system is a time-consuming
and challenging task. Therefore, as an alternative to the model-based con-
trol, model-free control may provide an intelligent control scheme. The fuzzy
logic has an exceptional ability to handle the uncertainties in the system
(Celikyilmaz and Turksen, 2009). Therefore, fuzzy logic controllers (FLCs)
have become one of the most popular approaches to control nonlinear systems
when their precise mathematical model is challenging to obtain (Castillo et al.,
2016a; Cervantes and Castillo, 2015; Mendel et al., 2014). FLCs have been
successfully designed and implemented to control mobile robots (Castillo et al.,
2016b; Tai et al., 2016; Sanchez et al., 2015; Kumbasar and Hagras, 2014; Ha-
gras, 2004), especially UAVs (Fu et al., 2016; Fakurian et al., 2014). However,
one weakness of FLCs is that they need to be tuned to deal with uncertainties.
Manual tuning can be a difficult and troublesome task. On the other hand,
artificial neural networks (ANNs) are a family of supervised learning model
that mimics the human brain. They are widely used in many applications due
to their ability to learn from input-output data. The combination of FLC and
ANN, called fuzzy neural network (FNN), fuses the reasoning ability of FLC
to handle uncertain information with the training capability of ANN to learn
from the controlled process (Gaxiola et al., 2015). FNN has shown promising
results as it adopts the advantages from both FLC and ANN (Wang et al.,
2015; Kim and Chwa, 2015; Gaxiola et al., 2014).

Derivative-based (computational approaches) and derivative-free (heuris-
tic methods) are the two main classes of training algorithms for tuning the
FNN parameters. The former require some partial derivatives to be calcu-
lated to tune the parameters of FNN, while the latter do not need deriva-
tive information in order to update the parameters of FNN. Gradient descent
(GD) (Mukherjee and Routroy, 2012) and genetic algorithms (GAs) (Martinez-
Martinez et al., 2015) are the most widely used approaches among the existing
derivative-based and derivative-free training methods, respectively. However,
GD training algorithms are based on the first-order Taylor expansion of a non-
linear function. Therefore, GD has low learning speed and mediocre efficacy,
especially when the search space is complex or the solution is near to the lo-
cal minimum. Besides, since GAs are based on a random search, they are
slow-converging, non-deterministic and do not guarantee to find global max-
ima. Because of all aforementioned reasons, GD and GAs are not suitable for
UAV applications. In order to obtain a more exact update law to optimize
the parameters of a nonlinear function, second order Taylor expansion of the
nonlinear function may be used which yields Newton’s optimization algorithm.
The implementation of Newton’s optimization method is too difficult as it in-
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cludes the calculation of Hessian matrix. To overcome these problems, more
advanced algorithms have to be used such as sliding mode control (SMC) and
Levenberg-Marquardt (LM) based algorithms. LM algorithm approximates
the Hessian matrix which normally exists in newton’s optimization method.
This decreases the complexity of the algorithm considerably.

SMC is the robust control algorithm that can deal with the input uncer-
tainties and external noise in a nonlinear system when it is controlled on the
sliding surface (Hernandez-Gonzalez et al., 2012). FNN trained with SMC
algorithm has been extensively used to control nonlinear systems due to its
excellent properties, such as external disturbance rejection, parameter varia-
tion insensitivity and fast dynamic response (Ma et al., 2017; Lin et al., 2014).
Moreover, over the last few years, the combination of SMC and FNN has been
successfully applied in mechatronics engineering such as antilock braking sys-
tem (Topalov et al., 2009) and robotic manipulator (Wai and Muthusamy,
2013).

On the other side, LM algorithm is a simplified and robust approximation of
Newton’s optimization algorithm which results in faster convergence than basic
GD method while it is not as complex as Newton’s optimization algorithm.
In this case, the Hessian matrix is approximated and its complexity is greatly
reduced. Thus, although it is more time consuming than GD, because of
its superior performance, LM is preferred over GD for the consequent part
parameters. LM algorithm has many successful implementations to tune the
parameters of the FNN (Castillo et al., 2013; Salimifard and Safavi, 2013)
FNN trained with LM algorithm exhibits not only faster-training speed and
more robust capability, but also better forecasting accuracy (Khanesar and
Kayacan, 2015). Furthermore, LM algorithm is one of the most successful
training algorithms for small and medium sized patterns (Salim et al., 2013).
Therefore, LM algorithm is a promising method for training FNNs.

UAVs are different from the most of commercial robotic systems, such as
robot manipulators or ground vehicles, in a way that there are many custom-
made UAV designs. Moreover, even if the UAV is commercialised one, many
modifications can be done, such as additional on-board sensors or installation
of different propellers, and the initial mathematical model of the system can
not be used any-more through the control design. Therefore, our aim is to
propose an adaptive and platform-free control scheme.

In this paper, feedback-error learning method is proposed in which type-1
FNN (T1FNN) is trained by a novel LM learning algorithm working in parallel
with a conventional proportional-derivative (PD) controller for the quadrotor
trajectory tracking problem under changing wind gust conditions. Thanks to
learning capability of the proposed controllers, experimental results show the
efficacy of the learning algorithms. The proposed T1FNN controller is superior
to the conventional PD controller in terms of control accuracy. To the best of
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our knowledge, this is the first time these parameter update rules for T1FNN
are tested in the real-time for quadrotor UAV.

The main contributions of this study are following:

� a novel LM theory-based learning algorithm with an adaptive learning
rate for T1FNN is presented;

� the proof of the stability of the LM method for the training of T1FNN
is proposed;

� for the first time, SMC and LM theory-based parameter update rules for
T1FNN are implemented in robot operating system (ROS) using C++
to navigate a quadrotor UAV in real-time;

� the performances of proposed methods have been compared for the UAV
3D trajectory tracking problem in the presence of wind;

� an adaptive platform-free control of UAVs is proposed for the 3D tracking
problem.

This paper is organised as follows. In Section 2, a nonlinear dynamical
model of a quadrotor UAV is presented. In Section 3, the overall control scheme
for a quadrotor is described. In Section 4, a fuzzy-neuro control approach
with the parameter update rules is proposed. In Section 5, the efficiency of
the control algorithm is tested in simulation. In Section 6, some real-time
experimental tests are conducted in order to validate the proposed control
solution. Finally, in Section 7, some conclusions and future work are drawn.

2. Mathematical Model of the Quadrotor UAV

Let ~FW = {~xW , ~yW ,~zW} be the world fixed frame (considered inertial

under the hypothesis of flat and nonrotating Earth) and ~FB = {~xB, ~yB,~zB} be
the body frame. The origin of the body frame is located at the center of mass
(COM) of the quadrotor, as illustrated in Fig. 1.

2.1. Rotor Dynamics

The four propellers rotations generate four forces (f1, f2, f3, f4), directed
along the axis of rotation ~zB, and four torques (τ1, τ2, τ3, τ4), around the axis
of rotation ~zB. Let T be the total thrust which acts along ~zB axis, whereas τφ,
τθ and τψ be the moments which act around ~xB, ~yB and ~zB axes, respectively.
Under these considerations, the vector u of control inputs is chosen as in
(Mahony et al., 2012):

u =
[
T τφ τθ τψ

]T
, (1)

where l is the arm length.
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2.2. Rotational Dynamics

The attitude of the quadrotor o =
[
φ θ ψ

]T
is described by the three

Euler’s angles. The derivative with respect to time of the angles o is given by

ω =
[
φ̇ θ̇ ψ̇

]T
and the angular velocity expressed in ~FB is ωB =

[
p q r

]T
.

The relation between ω and ωB is given by

ω = TωB, (2)

where T is the transformation matrix from ~FB to ~FW :

T =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

 . (3)

Using the Euler equation, the rotational dynamic equation is the following:

Iω̇B = −ωB × IωB + τ , (4)

where I = diag(Ix, Iy, Iz) is the diagonal inertia matrix and τ =
[
τφ τθ τψ

]T
is the vector of external torques. Using (2) and (4), the following rotational
dynamic equations are obtained:

φ̇ = p+ sinφ tan θq + cosφ tan θr ṗ = Iy−Iz
Ix

qr + 1
Ix
τφ

θ̇ = cosφq − sinφr q̇ = Iz−Ix
Iy

pr + 1
Iy
τθ

ψ̇ = sinφ
cos θ

q + cosφ
cos θ

r ṙ = Ix−Iy
Iz

pq + 1
Iz
τψ.

(5)
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Figure 1: Quadrotor model with reference frames.
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2.3. Translational Dynamics

The absolute position of the quadrotor p =
[
x y z

]T
is described by the

three Cartesian coordinates of its COM in ~FW . The derivative with respect
to time of the position (x, y, z) is given by

v =
[
ẋ ẏ ż

]T
=
[
u v w

]T
, (6)

where v is the absolute linear velocity of the quadrotor’s COM expressed with
respect to ~FW . Let vB ∈ R3 be the absolute linear velocity of the quadrotor
expressed in ~FB. So, v and vB are related by

v = RvB, (7)

where R ∈ SO(3) is the rotation matrix from ~FB to ~FW :

R =

cosψ cos θ cosψ sinφ sin θ − cosφ sinψ sinφ sinψ + cosφ cosψ sin θ
cos θ sinψ cosφ cosψ + sinφ sinψ sin θ cosφ sinψ sin θ − cosψ sinφ
− sin θ cos θ sinφ cosφ cos θ

 .
(8)

Using the Newton equation, the translational dynamic equation is

mv̇ = F (9)

where m is the UAV’s mass and F is the vector of external forces given by

F =

− (cosφ sin θ cosψ + sinφ sinψ)T
− (cosφ sin θ sinψ − sinφ cosψ)T

− cosφ cos θT +mg

 , (10)

in which g is the gravitational acceleration. Using (6) and (9), the translational
dynamic equations are as follows:

ẋ = u u̇ = − 1
m

(cosφ cosψ sin θ + sinφ sinψ)T

ẏ = v v̇ = − 1
m

(cosφ sinψ sin θ − cosψ sinφ)T

ż = w ẇ = − 1
m

cosφ cos θT + g.

(11)

Finally, (5) and (11) provides the equations of the UAV’s motion.

3. Control Scheme

The overall architecture of the controller is illustrated in Fig. 2. It consist
of two interconnected control loops. The outer loop (position controller) is
responsible for the quadrotor position tracking. While the inner loop (velocity
controller) is responsible for the velocity tracking and attitude stabilisation.
The quadrotor dynamical model is described in (5) and (11). Due to the
quadrotor’s underactuation, only four degrees of freedom (DOFs) out of its
six DOFs can be controlled. In this paper, three positional coordinates of the
quadrotor are chosen as the controlled variables. Therefore, the trajectory

generator provides the desired position p∗ =
[
x∗ y∗ z∗

]T
.
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Figure 2: Block diagram of the control scheme for the quadrotor UAV.

3.1. Position Controller

The position controller consists of three independent controllers to track
the desired position of the UAV on x, y and z axes. It takes three position
error measurements from a position sensor, e.g., Mo-cap, GPS, SONAR, IR
or vision-based: 

ex = x∗ − x
ey = y∗ − y
ez = z∗ − z,

(12)

and computes the desired velocity v∗ =
[
u∗ v∗ w∗

]T
in order to reach the de-

sired position p∗. Three different position controllers (PD and two PD+FNN)
are introduced in the next section.

3.2. Velocity Controller

For the velocity tracking, we use the nonlinear geometric controller on the
special Euclidean group SE(3) (Lee et al., 2012). It receives the desired velocity
v∗ and using the actual velocity v, actual attitude o and angular rate ωB, it
computes the control input u.
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The desired direction of the first body axis is ~x∗B and can be commanded
by the higher-level controller. The desired direction of the third body axis is

~z∗B =
−kvev −mge3
‖ − kvev −mge3‖

, (13)

where ev = v − v∗ is the velocity error, e3 =
[
0 0 1

]T
and kv is some

positive constant gain. Then, the desired direction of the second body axis
can be computed as

~y∗B =
~z∗B × ~x∗B
‖~z∗B × ~x∗B‖

. (14)

In addition, ~x∗B should be not parallel to ~z∗B.
The rotation matrix for the desired attitude is

R∗ =
[
~y∗B × ~z∗B ~y∗B ~z∗B

]
∈ SO(3). (15)

Therefore, the attitude error is as follows:

eR =
1

2

[
R∗TR−RTR∗

]∨
, (16)

where ∨ is the vee map. The tracking error for the angular velocity is as
follows:

eω = ωB −RTR∗
[
R∗T Ṙ∗

]∨
. (17)

Finally, the control inputs (1) are chosen as follows:{
T = (kvev +mge3)

T Re3

τ = −kReR − kωeω + [ωB]∧ IωB,
(18)

where ∧ is the hat map, kv, kR and kω are some positive constant gains. The
UAV receives this control input and converts it to the motor velocities.

4. Adaptive Fuzzy-Neuro Control Approach

4.1. Control Scheme and the Adaptive Fuzzy-Neuro Inference System

In the proposed control scheme which is shown in Fig. 3, the conventional
PD controller is operating in parallel with the fuzzy-neuro controller (FNN
block on Fig. 3). The conventional PD controller is utilized as an ordinary
feedback controller to ensure the global asymptotic stability of the system in a
compact space and provide sufficient time for the initialization of the learning
process of the FNN. In this way, after a finite time, the FNN is supposed
to learn the system dynamics and take over the control responsibility of the
system. The PD control law is written in the following form:

τc = kpe+ kdė. (19)

9



𝜏𝜏𝑛𝑛 𝜏𝜏𝑐𝑐 PD 
controller 

𝑅𝑅𝑅𝑅𝑅𝑅∗ 

𝑅𝑅. 
�̇�𝑅 

+ 
− 

FNN 

𝑑𝑑
𝑑𝑑𝑑𝑑

 

𝑅𝑅. + 

𝜏𝜏𝑛𝑛 

Quadrotor 
UAV − 

Figure 3: A conventional controller working in parallel with an intelligent controller.

where e is the feedback error, kp and kd are some positive constants corre-
sponding to proportional and derivative gains respectively.

In this paper, the proposed FNN which has two input signals, x1(t) = e(t)
and x2(t) = ė(t), and one output signal, τf (t), as depicted on Fig. 4 uses
Takagi –Sugeno– Kang (TSK) fuzzy model in which the antecedent part is
the fuzzy subset and the consequent part is the function of input variables.
Hence, the kth rule of TSK fuzzy model, where k = (j − 1).J + i, with two
input variables, x1 and x2, can be described as follows:

kth Rule: IF x1 is M1i and x2 is M2j, THEN fij=aix1+bjx2+dij

where ai, bj and dij are given constants (i = 1, ..., I and j = 1, ..., J), M1i and
M2j are fuzzy sets for the first and second input with their corresponding Gaus-
sian membership functions represented as µ1i(x1) and µ2j(x2) respectively, and
fij is the consequent part of the fuzzy system with I and J being the number
of membership functions for x1 and x2 respectively. In the current investiga-
tion the coefficients ai and bj in the kth rule of TSK fuzzy model are assumed
to be equal to zero which is a widely used simplification which results in a
zero-order TSK FNN model.

The strength of the kth rule is calculated as the T -norm of the member-
ship functions in the antecedent part. In our case, the T -norm is selected as
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Figure 4: Structure of FNN.
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multiplication to guarantee that the mathematical model is derivable which
is required by the most neural network learning algorithms. Hence, the firing
strength of the kth rule can be written as follows:

Wij = µ1i(x1)µ2j(x2) (20)

where the Gaussian membership functions µ1i(x1) and µ2j(x2) in the above
expression are defined as:

µ1i (x1) = exp

[
−(x1 − c1i)

2

σ2
1i

]
(21)

µ2j (x2) = exp

[
−
(
x2 − c2j

)2
σ2
2j

]
(22)

where σ and c are the standard deviation and the mean of the membership
functions, respectively. The real constants c, σ > 0 are among the tunable
parameters of the FNN structure.

By inserting (21) and (22) into (20), we can obtain the following expression:

Wij = exp

[
−(x1 − c1i)

2

σ2
1i

−
(
x2 − c2j

)2
σ2
2j

]
(23)

Therefore, the output signal of the FNN τn(t) can be computed as the
weighted average of each rule’s output:

τn(t) =

∑I
i=1

∑J
j=1 fijWij∑I

i=1

∑J
j=1Wij

=
I∑
i=1

J∑
j=1

fijW ij (24)

where W ij is the normalized value of the output of the neuron ij from the
second hidden layer of the network:

W ij =
Wij∑I

i=1

∑J
j=1Wij

(25)

The overall control input τ to the system to be controlled is determined as
follows:

τ = τc − τn (26)

where τn and τc are the control signals produced by the FNN controller and
the PD controller, respectively.

In this investigation, the following assumptions have been used:
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Based on the control cheme in Fig. 3, where the PD controller is used to
ensure global asymptotic stability in compact space, it is assumed that the
incoming signals, x1(t) and x2(t), and their time derivatives, ẋ1(t) and ẋ2(t),
cannot have infinite values. Thus, they can be considered bounded:

|x1(t)| ≤ Bx, |x2(t)| ≤ Bx, |ẋ1(t)| ≤ Bẋ, |ẋ2(t)| ≤ Bẋ ∀t (27)

where the real constants Bx, Bẋ > 0 are assumed to be some known numbers.
Similarly, the vectors defining the tuning parameters σ and c of the Gaus-

sian membership functions are considered bounded as well:

‖σ1‖ ≤ Bσ , ‖σ2‖ ≤ Bσ , ‖c1‖ ≤ Bc, ‖c2‖ ≤ Bc (28)

where σ1 = [σ11 ... σ1i ... σ1I ]
T , σ2 =

[
σ21 ... σ2j ... σ2J

]T
, c1 = [c11 ... c1i ... c1I ]

T

and c2 =
[
c21 ... c2j ... c2J

]T
, and Bσ, Bc > 0 are some known constants.

Due to physical constraints, the time variable weight coefficient, fij(t), can
be considered bounded too, i.e.,

|fij(t)| ≤ Bf ∀t (29)

for some real constant Bf > 0.
From (20)-(25) and (27)-(28) it can be easily seen that 0 < W ij < 1, and

from (25) it is obvious that
∑I

i=1

∑J
j=1W ij = 1.

In addition, from (27) to (29) it is evident that τ and τ̇ will also be bounded
signals:

|τ (t)| ≤ Bτ , |τ̇ (t)| ≤ Bτ̇ ∀t (30)

where Bτ , Bτ̇ > 0 are some known constants.

4.2. Sliding Mode Control Theory-Based Learning Algorithm for FNN

The zero dynamics of the learning error coordinate τc (t) can be described
as a time-varying sliding surface Sc by utilizing the principles of the SMC
theory:

Sc (τn, τ) = τc (t) = τn (t) + τ (t) = 0 (31)

By using this condition, the FNN structure is trained to become the nonlinear
regulator which assists the conventional parallel controller (in our case PD
controller) so that desired response can be obtained. Hence, the sliding surface
for the nonlinear system under control is as follows:

Sp (e, ė) = ė+ λe (32)

with λ > 0 being a parameter determining the reference trajectory of the error
signal.
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Definition: A sliding motion will appear on the sliding manifold Sc (τn, τ) =
τc (t) = 0 after a time th, if the condition Sc(t)Ṡc(t) = τc (t) τ̇c (t) < 0 is
satisfied for all t in some nontrivial semi-open subinterval of time of the form
[t, th) ⊂ (−∞, th).

Since it is desired to design a dynamical feedback adaptation mechanism,
or online learning algorithm for the FNN parameters such that the sliding
mode condition of the above definition is enforced.

The adaptation theorem that summarizes the parameter update rules for
FNN with two inputs is presented in the following form.

Theorem 1: If the adaptation laws for the parameters of the considered
FNN are given as follows:

ċ1i = ẋ1 (33)

ċ2j = ẋ2 (34)

σ̇1i = − (σ1i)
3

(x1 − c1i)2
αsgn(τc) (35)

˙σ2j = − (σ2j)
3

(x2 − c2j)2
αsgn(τc) (36)

ḟij = − W ij

W
T
W
αsign (τc) (37)

α̇ = γ|τc| − γνα (38)

where α > 0 is the adaptive learning rate.
Then, the learning error τc(t) will converge to a small neighborhood of zero

during a finite time th for any arbitrary initial condition τc(0).
Proof of Theorem 1: The time derivatives of (21) and (22) are as follows:

µ̇1i(x1) = −2A1i(A1i)
′µ1i(x1) (39)

˙µ2j(x2) = −2A2j(A2j)
′µ2j(x2) (40)

where

A1i =

(
x1 − c1i
σ1i

)
and A2j =

(
x2 − c2j
σ2j

)
(41)

The time derivative of (25) can be obtained easily as follows:

Ẇ ij = −W ijK̇ij +W ij

I∑
i=1

J∑
j=1

(
W ijK̇ij

)
(42)
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where
K̇ij = 2

(
A1i(A1i)

′ + A2j(A2j)
′
)

By using the following Lyapunov function, the stability condition can be
checked:

Vc =
1

2
τ 2c (t) +

1

2γ
(α− α∗)2 (43)

The time derivative of Vc is given by:

V̇c = τcτ̇c = τc(τ̇n + τ̇) +
1

γ
α̇(α− α∗) (44)

where

τ̇n =
I∑
i=1

J∑
j=1

(ḟijWij + fijẆij) (45)

By replacing (45) to the (44), the following equation is obtained:

V̇c = τc

(
I∑
i=1

J∑
j=1

(
ḟijW ij + fij

(
−W ijK̇ij +W ij

I∑
i=1

J∑
j=1

W ijK̇ij

))
+ τ̇

)

+
1

γ
α̇(α− α∗)

V̇c = τc

[ I∑
i=1

J∑
j=1

ḟijW ij − 2
I∑
i=1

J∑
j=1

W ij

(
A1i(A1i)

′ + A2j(A2j)
′
)
fij

+ 2
I∑
i=1

J∑
j=1

(
W ijfij

I∑
i=1

J∑
j=1

W ij

(
A1i(A1i)

′ + A2j(A2j)
′
))

+ τ̇

]
+

1

γ
α̇(α− α∗),

where

Ȧ1i =
(ẋ1 − ˙c1i)σ1i − (x1 − c1i)σ̇1i

σ1i2

Ȧ2j =
(ẋ2 − ˙c2j)σ2j − (x2 − c2j) ˙σ2j

σ2j2

(46) can be obtained by using (33)-(36);

A1iȦ1i = A2jȦ2j = αsgn(τc) (46)
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V̇c = τc

[ I∑
i=1

J∑
j=1

ḟijW ij − 4
I∑
i=1

J∑
j=1

W ij

(
αsgn(τc)

)
fij+

+ 4
I∑
i=1

J∑
j=1

(
W ijfij

I∑
i=1

J∑
j=1

W ij(αsgn
(
τc)
))

+ τ̇

]
+

1

γ
α̇(α− α∗)

Since
∑I

i=1

∑J
j=1 W̃ij = 1,

V̇c = τc

[ I∑
i=1

J∑
j=1

ḟijW ij + τ̇

]
+

1

γ
α̇(α− α∗),

where

ḟij = − W ij

W
T
W
αsign (τc) (47)

So that the following equation for the time derivative of Lyapunov function is
achieved.

V̇c = τc

[
− αsgn(τc) + τ̇

]
+

1

γ
α̇(α− α∗) (48)

Furthermore,

V̇c = −α|τc|+ |τc|Bτ̇ +
1

γ
α̇(α− α∗) (49)

= −(α− α∗)|τc| − α∗|τc|+ |τc|Bτ̇ +
1

γ
α̇(α− α∗) (50)

Considering the adaptation law of α as follows,

α̇ = γ|τc| − γνα (51)

we have:

V̇c = |τc|Bτ̇ − α∗|τc| − ν(α− 1

2
α∗)2 +

ν

4
α∗2 (52)

Taking α∗ as Bτ̇ ≤ α∗

2
, we have:

V̇c ≤ −α
∗

2
|τc|+

ν

4
α∗2 (53)

which implies that the Lyapunov function decreases until |τc| < να∗

2
. So that

τc will stay bounded. Furthermore ν is a design parameter and it is possible
to take this value as small as desired.

15



The relation between the sliding function (it is a point in this investigation)
Sp and the zero adaptive learning error level Sc is as follows:

Sc = τc = kP e = kpSp (54)

The tracking performance of the feedback control system can be analyzed
by introducing the following Lyapunov function candidate:

Vp =
1

2
S2
p (55)

Theorem 2 : If the adaptation law for the adjustable parameters of the FNN
is selected as in (33)-(38), then the negative definiteness of the time derivative
of the Lyapunov function in (55) is guaranteed.

Proof of Theorem 2: Evaluating the time derivative of the Lyapunov func-
tion in (55) yields:

V̇c ≤ −
α∗

2
|τc|+

ν

4
α∗2 ∀Sc, Sp 6= 0 (56)

This equation implies that Vc converges until |τc| < να∗

2
and |τc| remains

bounded.

4.3. Levenberg-Marquardt-Based Training Algorithm for FNN

Theorem 3: If the Levenberg-Marquardt based parameter update rules for
FNNs are as follows:

ċ1i = ẋ1 (57)

ċ2j = ẋ2 (58)

σ̇1i = − (σ1i)
3

(x1 − c1i)2
αsgn(τc) (59)

˙σ2j = − (σ2j)
3

(x2 − c2j)2
αsgn(τc) (60)

ḟ = −γ
(
W W

T
+ δI

)−1
Wsgn(τc) (61)

where δ is the adaptive parameter considered for the Levenberg Marquardt
and is selected as equal to

δ = max{W T
W,α} (62)

In which α has a constant value.

16



Then, the learning error τc(t) will converge to a small neighborhood of zero
during a finite time th for any arbitrary initial condition τc(0).

Proof of Theorem 3: In order to prove the stability of Theorem 3, the
Lyapunov function considered is as follows:

Vc =
1

2
τ 2c (t) (63)

Using the adaptation laws of (57)-(60) and a similar analysis as in Appendix
B we have:

V̇c = τc

[ I∑
i=1

J∑
j=1

ḟijW ij + τ̇

]
(64)

Considering the adaptation law of (61), the time derivative of the Lyapunov
function can be rewritten as follows:

V̇c = τc

[
γW

T
(
− δ−1 + δ−1W

(
I +W

T
δ−1W

)−1
W

T
δ−1
)
Wsgn(τc) + τ̇

]
= τc

[
γW

T
(
− δ−1 + δ−1W

(
δ +W

T
W
)−1

W
T
)
Wsgn(τc) + τ̇

]
= −δ−1γW T

W |τc|+ |τc|δ−1γW
T
W
(
δ +W

T
W
)−1

W
T
W +Bτ̇ |τc|

= −δ−1γW T
W |τc|+ |τc|δ−1γW

T
W
(
δ +W

T
W
)−1 (

δ +W
T
W − δ

)
+Bτ̇ |τc|

= −δ−1γW T
W |τc|+ γ|τc|δ−1W

T
W − γ|τc|W

T
W
(
δ +W

T
W
)−1

+Bτ̇ |τc|

= −γ|τc|W
T
W
(
δ +W

T
W
)−1

+Bτ̇ |τc|.

Considering δ as equal to δ = W
T
W , we have:

V̇c = −0.5γ|τc|+Bτ̇ |τc| (65)

It is further assumed that γ > Bτ̇
4

, so that:

V̇c ≤ −1

4
γ|τc| (66)

This concludes the proof.
In order to analyze the sliding behavior of the system under Levenberg-

Marquardt adaptation laws of 57-61, the following Lyapunov function candi-
date is used.

Vp =
1

2
S2
p (67)
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Theorem 4 : Let the adjustable parameters of FNN be tuned using the
adaptation laws as in (57)-(61), the negative definiteness of the time derivative
of the Lyapunov function in (67) is guaranteed and the sliding manifold of
Sp = ė+ χe in which χ = Kp/Kd converges to zero.

Proof of Theorem 4: The following equation relates the sliding manifold of
Sp = ė+ χe to τc.

Sp = ė+ χe = ė+
Kp

Kd
e =

τc
Kd

(68)

Hence, the time derivative of the Lyapunov function in (67) yields:

V̇c = SpṠp =
τcτ̇c
K2
d

≤ −γ|τc|
4K2

d

= −γ|Sp|
4Kd

(69)

which implies that Vc converges to zero in finite time th which is as follows.

th ≤
4KdSp(0)

γ
(70)

5. Simulation Studies

In this section, the trajectory-tracking task in which a quadrotor aerial
vehicle which needs to convergence to a desired path in finite time is per-
formed under wind and gust conditions. The simulation results are presented
to illustrate the performance of the proposed controller.

5.1. Intrinsic Parameters of the Quadrotor and Control Variables

Robot operating system (ROS) and Gazebo simulator are used to imple-
ment the dynamical simulations of trajectory-tracking task of quadrotor where
its intrinsic parameters are defined in Table 1. These parameters are selected
to be close to the ones of the real Parrot Ar.Drone 2.0 quadrotor. The control
gains for the PD controller are chosen as follows:

kp = 2.5, kd = 0.005

Table 1: Quadrotor’s intrinsic parameters.

Parameter Value Unit

m 1.07 [kg]
l 0.17 [m]
b 6.55× 10−6 [N · s2]
d 2.66× 10−2 [N ·m · s2]
Ix 3.0× 10−2 [kg ·m2]
Iy 4.0× 10−2 [kg ·m2]
Iz 2.1× 10−2 [kg ·m2]
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As for the initial control parameters of the FNN controller, it is set to
(here, subindexes x, y and z correspond to position channels in Fig. 2):

c1x = c1y = c1z = [−3, 0.0001, 3]T

c2x = c2y = c2z = [−30, 0.0001, 30]T

σ1x = σ1y = σ1z = [1.5, 1.5, 1.5]T

σ2x = σ2y = σ2z = [15, 15, 15]T

αx = αy = αz = 0.001

while the initial condition of time variable weight coefficient, fij(0), is chosen
to be sufficiently small, i.e., fij(0) ∈ [0, 0.001].

The adaptive learning parameters for FNN are chosen as:

� FNN based on SMC:
γx = γy = γz = 1.5,

νx = 0.85, νy = 0.85, νz = 0.2

� FNN based on LM:
γx = γy = γz = 1.5,

ᾱx = 1.1, ᾱy = 1.1, ᾱz = 0.9

which are updated on intervals of dt = 0.01s, while the total simulations time
is equal to 50s.

5.2. Trajectory Generation

In the classical UAV flight missions, climbing, ascending and descending
curves as well as level flight are considered as typical flight manoeuvres. There-
fore, in our experimental scenario, all aforementioned manoeuvres will be in-
cluded during the flight of quadrotor in order to evaluate the robustness of
proposed controllers under the flight sequence which resembles the actual UAV
flights. At the beginning, the quadrotor UAV is hovering at 15m height (an
initial position). Then, it starts to make two full circles with 20m diameters
in clockwise followed by counterclockwise direction. At the same time, the
quadrotor is also changing its altitude before coming back to its initial posi-
tion. Throughout the simulation, the desired translational velocity are kept
constant and equal to 2.5m/s.

In addition, the feasibility of flight under the dynamic constraints of quadro-
tor are ensured by saturating the control input signals and defining trajectory
as a time-based trajectory.
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5.3. Source of Disturbances

In order to evaluate the efficacy of proposed control strategy, the periodic
wind gust is added to our simulation scenario. As can be seen from Fig. 5, the
wind gust vw blows with three different speed (1.0m/s, 3.0m/s and 5.0m/s)
along the [−1,−1, 0] direction for the first 17s, then its orientation changes to
opposite direction to change back to original direction after 34s.

5.4. Simulation Results

In Fig. 6, the trajectory tracking in the presence of wind (vw = 3m/s) is
shown for the PD controller and two FNN controllers which are tuned by SMC
and LM approach, respectively, operating in parallel with the conventional PD
controller. From these figures, it is evident that the PD controller has a no-
table steady state error occurred from internal uncertainties such as lack of
modeling as well as due to the external disturbance as the periodic wind. In
addition, when the PD controller works alone, it cannot eliminate the existed
error during the whole simulation. However, in case of SMC-based FNN (SM-
CFNN) and LM-based FNN (LMFNN) controllers, the steady state error is
notably reduced because of adaptive learning capabilities of FNN structure.
As a result, trajectory tracking performance of quadrotor which uses intel-
ligent FNN structure becomes significantly better compared to normal case
when the PD controller is only utilized.

As for output control signals, Figs. 7-8 present control signals for x, y and z
axes in case when the PD controller is operating in parallel with FNN controller
which are tuned by SMC and LM approach, respectively. As can be seen from
these figures, the FNN controller is taking over the control responsibilities from
PD controller, and therefore, after some time the output control signal from
PD controller approaches to zero neighborhood, and then only FNN controls
the system as it is supposed to do in such kind of control schemes. It should
be noted that when trajectory sequence changes or some disturbances occur
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Figure 6: Trajectory tracking for vw = 3m/s.

the output control signals from the PD controller become nonzero. In such
case, FNN restarts the learning process and takes over control responsibilities
again as shown in Figs. 7-8.

The Euclidean error in the presence of wind is shown in Fig. 9. The combi-
nation of PD and FNN controllers, PD+SMCFNN and PD+LMFNN, give a
significantly smaller error than the conventional PD controller when it works
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Figure 7: PD and SMCFNN control signals for the x, y and z axes for vw = 3m/s.
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Figure 8: PD and LMFNN control signals for the x, y and z axes for vw = 3m/s.
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alone. This can be also seen from Table 2 which shows the average root mean
squared error (RMSE) values for ten simulations for each case: 1.0m/s, 3.0m/s
and 5.0m/s. It is observed that FNN controllers decrease the PD controller
RMSE error for different wind speed by 67%, 55% and 50%, respectively. In
addition, it can be also observed that LMFNN outperforms SMCFNN with
lower wind gust. On the other hand, the PD controller can be tuned in more
aggressive way to achieve superior results, although this is not practical in
real life due to the lack of modelling and unknown disturbances in real-time
applications. Furthermore, aggressive tuning tends to be case dependent, and
therefore, it cannot give a comparable performance in different conditions;
while adaptive learning capabilities of FNN structure are essential for real
world applications.

6. Experimental Tests

The experimental flight tests for the trajectory tracking problem were
conducted in the indoor environment and evaluated in the Motion Capture
Laboratory at Nanyang Technological University (NTU), Singapore, shown in
Fig. 10. The laboratory environment is designed to use a set of eight OptiTrack
Prime 13 cameras, which are fed into an OptiHub, to provide real-time pose
(position and attitude) measurements of the UAV’s COM with an update rate
of 120Hz and accuracy around 0.1mm. The OptiTrack cameras are able to
recognize a particular UAV according to the pattern of the infrared reflective
markers which are fixed on the UAV’s frame. The pose data are routed to the
controller trough the Optitrack server. The aircraft used for the experimental

Table 2: Average Euclidean RMSE for different wind speeds (unit: m).

Controller
Wind speed, vw

1m/s 3m/s 5m/s

PD 0.966 1.006 1.204
SMC-based FNN 0.337 0.452 0.600
LM-based FNN 0.316 0.477 0.689
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Figure 10: Indoor experimental setup.

flight tests is Parrot AR.Drone 2.0 Power Edition UAV, which is a velocity
controlled commercial quadrotor. This UAV features a 1GHz CPU, 800MHz
GPU, 1GB of RAM, two video cameras, inertial and ultrasonic sensors. In
order to communicate with this UAV, it creates its own Wi-Fi network and
opens an UDP communication to receive command signals, allowing to connect
from devices with different operative systems such as Linux, Android or Win-
dows. The control system itself is implemented in Linux using ROS and C++
environment. The Ardrone Autonomy ROS package is used to transfer the
output velocity from the controller to the quadrotor via a Wi-Fi connection.

6.1. Experimental Results

In this section, the performance of PD controller only and FNN controller
trained by SMC and LM working in parallel with the conventional PD con-
troller for ′8′ shaped time based trajectory is presented. The maximum speed
along trajectory is kept to be 1m/s. In order to evaluate the efficacy of pro-
posed control strategy, an industrial fan, which generates maximum wind gust
of 2m/s, is used to imitate the external disturbances. The wind gust blows
along the [1,−1, 0] direction.

In Fig. 11, the trajectory tracking is shown for the PD controller and FNN
controllers which are tuned by SMC and LM. As can be seen, the steady state
error is notably reduced because of learning capabilities of FNN structure.
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Figure 11: Trajectory tracking for vw = 2m/s.

This can also be seen from the Euclidean error and the average RMSE values
from ten experiments which are shown in Fig. 12 and Table 3, respectively.
The combination of PD and FNN controller gives a significantly less error
than the conventional PD controller when it works alone. It should be noted
that FNN controllers decrease the PD controller RMSE error by about 36%.
Since we do not give any step input to the system, we do not provide the
transient response characteristics of the system, such as rise time, peak time
and maximum overshoot. A demonstration video related to our experiments
can be found at: https://youtu.be/yeUAsIHaZ20.

Hence, the trajectory tracking performance of quadrotor which uses intel-
ligent FNN structure becomes significantly better compared to normal case
when the PD controller is only utilized. However, SMC and LM-based FNN
controllers were not able completely to take over the control responsibilities
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Figure 13: SMCFNN and PD control signals for the x, y and z axes for vw = 2m/s.

from PD controller as shown in Fig. 13 and 14. Whereas both FNN controllers
were dominating in simulation studies, it was not the case for the real-time
tests. The reason for this is the space limitation of our Motion Capture Lab
which measures 5 × 7m2. Therefore, the active utilized area for the UAV is
maximum 3 × 5m2. In such a small area, also by having challenging trajec-
tory, the FNN controller does not have enough time to learn. In addition,
there exists communication delay between computer and ArDrone UAV. This
latency is mainly caused by the WiFi protocol delay as well as the down-
sampling/buffering step performed by ArDrone firmware prior to sending the
feedback over WiFi.

Table 3: Average Euclidean RMSE for different controllers (unit: m).

Controller PD SMC-based FNN LM-based FNN

RMSE 0.327 0.210 0.228
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Figure 14: LMFNN and PD control signals for the x, y and z axes for vw = 2m/s.

7. Conclusion

In this paper, SMC theory and LM-based learning algorithm for intelligent
FNN controller are proposed for the control and stabilizing of underactuated
nonlinear quadrotor UAV along a predefined trajectory in the presence of wind
gust conditions. The stability analysis of proposed parameter update rules are
presented. It was also demonstrated that proposed methods are capable to
significantly reducing the steady state errors and overcome the disturbances
and existed uncertainties which are generated by lack of modeling. Extensive
simulations in ROS and Gazebo environment are conducted to evaluate the
performance of the proposed controllers with the conventional PD controller.
In order to further test the proposed methods, the real-time experiments have
been also performed by using OptiTrack Motion Capture System. Experi-
mental results show that the combination of PD and FNN which is tuned by
SMC and LM algorithms gives a significantly less steady state error than the
conventional PD controller when it works alone.

7.1. Future Work

Future research will include the implementation of state estimation meth-
ods to account for the available on board information. In addition, type-2 fuzzy
sets will be implemented to achieve better noise rejection property. Moreover,
we will conduct real-time experiments with different types of UAVs in order
to validate the portability of our controller.
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