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Abstract—This work presents an online learning method
for improved control of nonlinear systems by combining deep
learning and fuzzy logic. Given the ability of deep learning
to generalise knowledge from training samples, the proposed
method requires minimum amount of information about the
system to be controlled. However, in robotics, particularly in
aerial robotics where the operating conditions may vary, online
learning is required. In this study, fuzzy logic is preferred to
provide supervising feedback to the deep model for adapting to
variations in the system dynamics as well as new operational
conditions. The learning method is divided into two phases:
offline pre-training and online post-training. In the former,
the system is controlled by a conventional controller and a
deep fuzzy neural network (DFNN) is pre-trained based on
the recorded input-output dataset, in order to approximate the
inverse dynamical model of the system. In the latter, only the
pre-trained DFNN is used to control the system. In this phase,
the fuzzy logic, which encodes the expert knowledge, is utilized
to observe the behaviour of the system and to correct the action
of DFNN instantaneously. The experimental results show that the
proposed online learning-based approach improves the trajectory
tracking performance of the unmanned aerial vehicle.

Index Terms—Deep learning, fuzzy logic, adaptive process
control, nonlinear systems, aerial robotics.

I. INTRODUCTION

IN recent years, research activities to develop learning or
adaptive controllers for nonlinear systems have taken a

centre stage due to their usefulness in providing effective
solutions in various robotic applications. Designing nonlinear
controllers to achieve high-accuracy tracking is typically diffi-
cult, due to parameters uncertainties, external disturbance and
other nonidealities in the systems. In such cases, the learning
capability of the controller is a must rather than a choice.

Deep learning is based on multi-layered deep neural net-
works (DNNs) which are distinguished from the more com-
monplace single-hidden-layer artificial neural networks by
their depth; that is the number of layers through which data
must pass in a multi-step process [1]. DNNs can effectively
be used to solve advanced tasks similar to or even better
than human experts [2]. In many areas of machine learning,
DNNs have made notable advances, e.g., image classification
[3], speech recognition [4] and language translation [5]. On
the other hand, fuzzy logic attempts to mathematically and
systematically emulate human reasoning and decision making
[6]. Moreover, fuzzy logic represents an excellent concept to
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create a connection between human logic and computational
paradigms [7]. Fuzzy logic systems (FLSs) have also an
exceptional ability to handle uncertainties [8]. In various fields,
FLSs have been proposed to solve many practical problems
efficiently, e.g., multicriteria decision-making [9], conditional
density estimation [10] and system control [11].

Each of these perceptive techniques has distinct properties
that make it suitable for particular problems and not for others.
For instance, DNNs are good at approximating knowledge, but
they do not explain how they take their decisions. Differently,
FLSs are good at explaining their decisions, but generally, they
are not good at acquiring new information. The limitations
of these two techniques have been a driving force behind the
creation of hybrid systems where the combination of DNN and
FLC can overcome the drawbacks of each individual method
[12]. In the literature, there are attempts to integrate strengths
of learning capability of neural networks and reasoning ability
provided by fuzzy logic, called fuzzy neural network (FNN),
for emission prediction [13], movie classification [14] and
robot control [15]. However, these approaches usually utilise
the sequential learning paradigms [16]. For example, in [13],
[15], first, the original inputs are fuzzified and, then, the
fuzzy numbers are fed into the neural network. Contrarily,
the method in [14], first, transforms the original data by using
DNN and, then, the deep representation is fuzzified at the
output layer. Correspondingly, one may ask whether a joint
learning framework exists that fuses wisely these two methods.

In this work, we propose a novel online deep fuzzy neural
network (DFNN) framework which profoundly fuses DNN
and FLS. In our framework, the first layer of DFNN fuzzifies
the original inputs and, then, the fuzzy numbers are fed into
subsequent layers of DFNN. The learning method is divided
into two phases: conventional offline training and proposed
innovative online training. After the offline pre-training phase,
where the past data samples collected on the controlled system
are used, the DFNN-based controller controls the system in
real-time, while fuzzy logic observes the behaviour of the
system and corrects the action of DFNN. With minimum
amount of prior knowledge about the system, the proposed
approach shows its capability to reduce tracking error online
by compensating for internal and external disturbances.

The contributions of this study can be summarized as:
• To the best of our knowledge, for the first time FLS is

used as a supervisor for the online training of DFNN.
• For the first time the DFNN-framework is used for

learning online the inverse dynamics of a system.
• It is shown that DFNN module is computationally ade-

quate for real-time control applications.
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This work is organised as follows. The control problem
of nonlinear systems is formulated in Section II. Section III
introduces the proposed framework based on DFNNs. Then,
Section IV provides simulation results for a nonlinear system,
to validate the proposed method in a deterministic environ-
ment. Whereupon, Section V provides experimental results
with quadcopter unmanned aerial vehicle (UAV) to validate
the proposed method in a real-life problem. Finally, Section VI
summarises this work with conclusions and future work.

II. PROBLEM FORMULATION

Let us consider a general nonlinear multi-input multi-output
system represented by its state-space model:{

x(k + 1) = f(x(k)) + g(x(k))u(k)

y(k) = h(x(k)),
(1)

where k ∈ N+ is the time step, x ∈ RnS is the state of the
system, u ∈ RnI is the input to the system, y ∈ RnO is the
output from the system, and f : RnS → RnS , g : RnS →
RnS × RnI and h : RnS → RnO are system functions. Let
r ∈ NnO0 be the vector of relative degrees of the system, which
is the number of times one has to differentiate the output to
have at least one of the inputs explicitly appearing [17], i.e.:

arg max
ri

∂

∂u

[
hi
(
fri−1 (f(x) + g(x)u)

)]
6= 0, i ∈ [1, nO].

(2)

Assumption 1. The dynamical system in (1) has well-defined
relative degrees in (2) [18], i.e.:

∀i ∈[1, nO] ∃ri ∈ N0 |

arg max
ri

∂

∂u

[
hi
(
fri−1 (f(x) + g(x)u)

)]
6= 0.

(3)

The input and the output of the system are related by

yi(k + ri) =

hi
(
fri−1 (f(x(k)) + g(x(k))u(k))

)
, i ∈ [1, nO].

(4)

If y is affine in u, then (4) becomes

yi(k + ri) = F (x(k)) +G(x(k))u(k), i ∈ [1, nO], (5)

where Fi(xk) = hi (fri(x(k))) : RnS → RnO and
Gi(x(k)) = ∂

∂u(k)

[
hi
(
fri−1 (f(x(k)) + g(x(k))u(k))

)]
:

RnS → RnO × RnI are decoupling functions. Finally, the
control law at time k to track the desired output of the system
y∗ ∈ RnO can be written as in [19]:

ui(k) = [G(x(k))]
−1

(y∗(k + ri)− F (x(k))) . (6)

Assumption 2. The desired output of the dynamical system
in (1) is available [20], i.e.:

∀k ∃y∗(k) ∈ RnO . (7)

Assumption 3. The dynamical system in (1) is input-to-output
stable [21], i.e.:

‖y(k)‖ ≤ γ (‖u(k)‖) ∀k, (8)

where γ is a gain function.

If a precise model of the system exists, the inversion of the
system can be computed. However, the system’s parameters
might be unknown and difficult to estimate (e.g., moments of
inertia). Besides, these parameters might change during the
operation of the system (e.g., mass). In addition, it is difficult
to predict the external disturbance term (e.g., wind gust).
Furthermore, measurements from the system might come from
a noisy sensor (e.g., monocular camera). Therefore, the control
law in (6) cannot always be calculated precisely, and for a
modified system a new control law has to be computed.

A. Internal Uncertainties
Let us consider a general nonlinear multi-input multi-output

system with internal uncertainties:{
x(k + 1) = f̃(x(k)) + g̃(x(k))u(k)

y(k) = h̃(x(k)),
(9)

where f̃ : RnS → RnS , g̃ : RnS → RnS×RnI and h̃ : RnS →
RnO are new system functions. The control law at time step
k to track the desired output y∗ can be written as:

ui(k) =
[
G̃(x(k))

]−1 (
y∗(k + ri)− F̃ (x(k))

)
, (10)

where F̃i(xk) = h̃i

(
f̃ri(x(k))

)
: RnS → RnO and

G̃i(x(k)) = ∂
∂u(k)

[
h̃i

(
f̃ri−1

(
f̃(x(k)) + g̃(x(k))u(k)

))]
:

RnS → RnO ×RnI are new decoupling functions. Therefore,
for an exact tracking of y∗, the exact values of new system
functions f̃ , g̃ and h̃ have to be known.

B. External Disturbance
Let us consider a general nonlinear multi-input multi-output

system with external disturbances:{
x(k + 1) = f(x(k)) + g(x(k))u(k) + d(k)

y(k) = h(x(k)),
(11)

where d ∈ RnS is the disturbance to the system. The control
law at time step k to track the desired output y∗ is:

ui(k) = [G(x(k))]
−1

(y∗(k + ri)− F (x(k)−D(k))) ,
(12)

where D(k) = hi
(
fri−1(d(k))

)
∈ RnO is the disturbance

decoupling matrix. Therefore, for an exact tracking of y∗, the
exact value of the disturbance d(k) has to be known.

C. Noisy Measurement
Let us consider a general nonlinear multi-input multi-output

system with noisy measurements:{
x(k + 1) = f(x(k)) + g(x(k))u(k)

y(k) = h(x(k)) +N (k),
(13)

where N : R2 → RnO is an additive noise, e.g., additive white
Gaussian noise, at time step k. The control law at time step k
to track the desired output y∗ can be written as:

ui(k) = [G(x(k))]
−1

(y∗(k + ri)−N (k + ri)− F (x(k))) .
(14)

Therefore, for an exact tracking of y∗, the exact model of the
noise N has to be known.
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III. DEEP FUZZY NEURAL NETWORK

To deal with the problems described in Section II, an
adaptive controller which can learn system dynamics online
and deal with uncertainties is required. DNNs are able to
learn from input-output data, whereas fuzzy logic has an
exceptional ability to handle noise and uncertainties. The DNN
with one antecedent fuzzification layer, also called DFNN,
can be used for learning control of nonlinear systems. The
DFNN neurons are organised in input layer with NI neurons,
Gaussian fuzzification layer with NF neurons, NL hidden
layers with (NH + 1) neurons in each layer, and output layer
with NO neurons, as shown in Fig 1. The input {I1, . . . , INI}
to DFNN is fuzzified by three Gaussian membership functions
(MFs):

µFk(Ij) = exp

[
− (Ij − cF,k)2

2σ2
F,k

]
,

j = 1, . . . , NI

k = 1, 2, 3,
(15)

where cF,1 = −1, cF,2 = 0, cF,3 = 1, and σF,1 =
σF,1 = σF,1 = 1, as depicted in Fig. 2. Then, the
fuzzified input {µF 1(I1), µF 2(I1), µF 3(I1), . . . , µF 1(INI ),
µF 2(INI ), µF 3(INI )} is fed into the first hidden layer of
DFNN through the network weights W1. The hidden layers
in DFNN are organized in a fully connected structure with the
network weights Wi, i = 2, . . . , NL − 1. Finally, the output
{O1, . . . ,ONO} is computed by applying the network weights
WNL to the output from the last hidden layer.

...

Input
layer

...

Fuzzification
layer

...
...

Hidden layers

...

Output
layerI1

INI

I1

INI

W1

µI

Wi WNL O1

ONO

Fig. 1. Structure of DFNN organized in input layer with NI neurons,
Gaussian fuzzification layer with NF neurons, NL fully-connected hidden
layers with (NH+1) neurons in each layer and output layer with NO neurons.

0
Ij0

µ(Ij)

1

−1 1

F 1 = N F 2 = Z F 3 = P

Fig. 2. ”Negative” (N), ”zero” (Z) and ”positive” (P) FSs represented by
three Gaussian MFs.

Assumption 4. The network weights Wi, i = 1, . . . , NL, are
bounded, i.e.:

‖Wi(k)‖∞ ≤ cW,i ∀k i = 1, . . . , NL, (16)

where cW,i, i = 1, . . . , NL, are some positive constants.

The learning is subdivided into two phases: offline pre-
training and online training [22], as illustrated in Fig. 3.
During the offline pre-training phase, a conventional controller
performs a set of trajectories and the batch of training samples
is collected. Then, DFNN-based controller, called DFNN0, is
pre-trained on the collected data samples, to approximate the
inverse of the system’s dynamics. However, DFNN0 cannot
adapt to the new conditions; therefore, the online training is
required. During the online learning phase, DFNN controls the
system and adapts the control input to improve performances.
The expert knowledge encoded into the rule-base, thanks to the
fuzzy mapping, provides the adaptation information to DFNN.
The approximation of the inverse of the system dynamics is
a typical regression problem; therefore, the cost function for
both offline and online training is the mean squared error.

A. Offline Pre-Training

During the offline pre-training phase, a feed-forward
DFNN0 learns the approximate inverse dynamics of the system
by adjusting the weights

{
W0

1, . . . ,W
0
NL

}
in the network. In

this control scheme, shown in Fig. 3a, a conventional con-
troller, e.g., proportional-integral-derivative (PID) controller,
controls the system alone. Hence, it is utilized as an ordinary
feedback controller to provide labelled training samples for
DFNN0. Each labelled training sample D0(k) consists of input
I0(k) and expected output O0(k) pair:

D0(k) =< I0(k),O0(k) >

=< {x(k − r̄),y(k)}, {ū(k − r̄)} > .
(17)

{
W0

1, . . . ,W
0
NL

}

Controller

DFNN0

System
y∗ + e ū

û

y
− x

(a) Offline pre-training of DFNN by conventional controller.

∆û

{W1, . . . ,WNL}

DFNN

FLS

System
y∗

+

û y

−

e

x

(b) Online training of DFNN by FLS.

Fig. 3. Block diagrams of the two control paradigms: offline pre-training
and online training (solid lines represent calculated quantities, dashed lines
represent measured quantities, dotted lines represent estimated quantities).
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where r̄ = max
∀i∈[1,nO]

ri. The training of DFNN0 involves back-

propagation to minimize the loss over all training examples,
and the network weights

{
W0

1, . . . ,W
0
NL

}
are updated until

the over-fitting appears. After the training, DFNN0 can ap-
proximate the inverse dynamics of the nominal system. The
pseudo-code of the offline pre-training is given in Algorithm 1.

B. Online Training

During the online training phase, DFNN controls the system
and, at the same time, learns how to improve the performances.
Since DFNN training requires supervised learning, another
process has to provide feedback about its performances. In
our method, FLS is used to monitor the system. By its nature,
FLS incorporates the expert knowledge in the form of rules,
and uses this knowledge to provide some useful advices [23].
The control scheme of the online training is shown in Fig. 3b.

The objective is to learn the control of the system by only
looking at its performance, i.e., in our case, the tracking error:

e(k) = y∗(k)− y(k), (18)

and its time derivative:

ė(k) = ẏ∗(k)− ẏ(k), (19)

where ẏ = ∂y
∂k ∈ RnO is the time derivative of the output

from the system, and ẏ∗ = ∂y∗

∂k ∈ RnO is the time derivative
of the desired output.

In our approach, FLS observes the behaviour of the system
controlled by DFNN, and, depending on the situation, corrects
the action of DFNN. The possible evolutions of the error
are depicted in Fig. 4. For example, if the error is positive,
i.e., ej(k) > 0, and its time derivative is also positive,
i.e., ėj(k) > 0, then the system diverges (top red curve in
Fig. 4). In this case, FLS will force DFNN to decrease the
control signal uj(k) significantly to stabilize the system, i.e.,
∆uj(k)� 0. In another possible case, if the error is negative,
i.e., ej(k) < 0, and its time derivative is zero, i.e., ėj(k) = 0,
then the error is steady (bottom purple line in Fig. 4). In this
case, DFNN falls down in a local minimum and FLS will give
a small positive perturbation, i.e., ∆uj(k) > 0. Finally, if the
error is zero, i.e., ej(k) = 0, and its time derivative is also
zero, i.e., ėj(k) = 0, then, this is the optimal case (green line
in Fig. 4) and no action has to be taken, i.e., ∆uj(k) = 0.

Algorithm 1: Offline pre-training of DFNN.
Input: -
Output: Pre-trained DFNN0

begin
while k < MaxSamples do

Get x(k − r̄), y(k), and ū(k − r̄)
Collect D0(k) in (17)

end
DFNN0 ← ConstructNetworkLayers(){
W0

1, . . . ,W
0
NL

}
← InitializeWeights()

Train DFNN0 on D0
end

Fig. 4. Possible evolution of the controlled dynamical system. The system
can diverge (red curves), converge (blue curves), it can have a steady error
(purple lines), or the error can be zero (green line). In the proposed approach,
FLC observes the time evolution of the output from the system controlled by
DFNN and, depending on the situation, corrects the action of DFNN.

All these intuitive rules can be formally described by a
Mamdani FLS. If N is the number of possible cases, for each
case, one rule Ri, i ∈ [1, N ], exists in the rule-base in Table I,
where the colour of the cell corresponds to the case in Fig. 4.
The inputs to the FLC are selected to be the tracking error and
its time derivative, i.e., ej(k) and ėj(k); while the output is
the correction signal, i.e., ∆uj(k). The input is represented by
three fuzzy sets (FSs): negative, zero and positive; while the
output can belong to five FSs: big decrease, small decrease,
no changes, small increase and big increase.

By their nature, FLS requires operations among FSs which
are computationally expensive. Since in a conventional FLS,
first, the input is fuzzified, then, it goes through the inference
engine and, in the end, it is defuzzified. However, an analitical
relation between the input to FLS and its output, called
fuzzy mapping [24], reduces significantly the computation
time which allows the application of FLSs for real-time control
applications. By using a similar approach in [25], a fuzzy
mapping which represents FLS described in Table I can be
generated for a multidimensional case.

By using the centroid defuzzification, the defuzzified output
from FLS is as in [26]:

ϕ(σ) =

∑N
i=1 fi(σ)Ci∑N
i=1 fi(σ)

, (20)

TABLE I
RULE-BASE FOR THE UPDATES OF uj(k).

ej(k)
ėj(k)

Negative Zero Positive
Big Big SmallNegative R1 : decrease R2 : increase R3 : increase
Small No SmallZero R4 : decrease R5 : changes R6 : decrease
Small Big BigPositive R7 : increase R8 : increase R9 : decrease
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where σ is the vector of crisp inputs, Ci is the consequent FS
of the i-th rule, and fi(σ) =

∏M
j=1 µAj,i(σj) ∈ [0, 1] ∀i ∈

[1, N ] is the firing strength of the i-th rule computed with the
product t-norm, in which M is the number of inputs, and µAj,i
is MF describing FS Aj of the j-th crisp input. In our case,
the number of inputs is two and Table I contains nine rules;
thus, (20) becomes:

ϕ(σ1, σ2) =

∑9
i=1

(
µA1,i

(σ1)× µA2,i
(σ2)

)
Ci∑9

i=1 µA1,i
(σ1)× µA2,i

(σ2)
. (21)

Then, the antecedent MFs are selected to be: µA1,1
= µA1,2

=
µA1,3

= µA2,1
= µA2,4

= µA2,7
= µA1 , µA1,4

= µA1,5
=

µA1,6 = µA2,2 = µA2,5 = µA2,8 = µA2 and µA1,7 = µA1,8 =
µA1,9 = µA2,3 = µA2,6 = µA2,9 = µA3 = −µA1 , which are
defined as triangular MFs:

µAk(σj) =


0 , σj < ak−1
σj−ak−1

ak−ak−1
, ak−1 ≤ σj ≤ ak

ak+1−σj
ak+1−ak , ak < σj ≤ ak+1

0 , σj > ak+1,

{
k = 1, 2, 3

j = 1, 2,

(22)
where a0 = −∞, a1 = −1, a2 = 0, a3 = 1 and a4 = +∞,
as illustrated in Fig. 5a. The consequent FSs are selected to
be singleton: C1 = C9 = C1 = −1, C4 = C6 = C2 = −0.5,
C5 = C3 = 0, C3 = C7 = C4 = 0.5 and C2 = C8 =
C5 = 1, as illustrated in Fig. 5b. Hence, after performing
some simplifications in (21), the fuzzy mapping is computed:

ϕ(σ1, σ2) = |σ1| −
|σ2|
2
− 3 |σ1σ2|

4
− 3σ1σ2

4
. (23)

This expression describes FLS in Table I in an analytical
form. Finally, (23) in its multidimensional form can be used
to update the control signal:

∆û(k) = αϕ (e(k), ė(k)) , (24)

where α > 0 is a scaling factor.

Remark 1. A large α allows to learn faster at the cost of
possible divergence or oscillation of the controlled system. A
smaller α may allow to learn in a safer and more conservative
way but may make the learning significantly longer.

Remark 2. If e(k) and e(k − 1) are approximately 0, i.e.,
e(k) ≈ 0∧e(k−1) ≈ 0; then, ė(k) approaches 0, i.e., ė(k)→
0. Consequently, from (24) and (23), ∆û is asymptotically
equivalent to 0, i.e., ∆û(k) ∼ 0. Therefore, the weights are
not updated, and the convergence condition is reached.

Each labelled training sample D(k) consists of input I(k)
and corrected output O(k) pair:

D(k) =< I(k),O(k) >

=< {x(k),y∗(k + r̄)}, {û(k) + (∆û(k)) û(k)} > .
(25)

At each iteration, DFNN is adapted with this training sample,
and the new output from the network is computed:

û(k) = DFNN(I(k)). (26)

The pseudo-code of online training is provided in Algorithm 2.

0
σj0

µ(σj)

1

−1 1

A1 = N A2 = Z A3 = P

(a) ”Negative” (N), ”zero” (Z) and ”positive” (P) FSs represented by three
triangular MFs.

0
ϕ

0

µ(ϕ)

1

−1 −0.5 0.5 1

C1 = BD C2 = SD C3 = NC C4 = SI C5 = BI

(b) ”Big decrease” (BD), ”small decrease” (SD), ”no change” (NC), ”small
increase” (SI) and ”big increase” (BI) FSs represented by five singleton MFs.

Fig. 5. Three triangular antecedence and five singleton consequent MFs for
the update of the control signal.

C. Stability Analysis

For the system in (1), a necessary condition for the stability
of the inverse dynamics, and hence for the effectiveness of the
DFNN-based approach, is the stability of the zero dynamics
of the system [27].

Theorem 1. Consider the system in (1) and the control signal
û(k) in (26). The overall closed-loop system is bounded-input-
bounded-state (BIBO) stable iff Assumptions 1–4 are verified.

Proof. For the proof, please refer to Appendix A.

Algorithm 2: Online training of DFNN.
Input: Pre-trained DFNN0

Output: Trained DFNN
begin

DFNN ← DFNN0

repeat
Get y(k), y∗(k), ẏ(k) and ẏ∗(k)
e(k)← y∗(k)− y(k) by using (18)
ė(k)← ẏ∗(k)− ẏ(k) by using (19)
∆û(k)← αFLS(e(k), ė(k)) by using (24)
û(k)← DFNN(I(k)) by using (26)
Adapt DFNN with D(k) by using (25)
Send u(k) to the system

until Stop
end
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IV. SIMULATION STUDY

In this section, the performances of the proposed approach
in Section III are tested on four different single-input-single-
output systems: nominal system, system with internal uncer-
tainties, system with external disturbance, and system with
noisy measurements. The desired trajectory is:

y∗(k) =
1

3
sin (3πk) +

1

2
cos (2πk)− 1. (27)

1) Nominal system: The nominal nonlinear system is se-
lected as: x(k + 1) =

[
x2

x1 − x21

]
+

[
0

1

]
u(k)

y(k) = −0.2x1 + x2.

(28)

2) Internal uncertainties in the system: The nominal system
in (28) with internal uncertainties is:x(k + 1) =

[
0.5x2

0.5x1 − 0.5x21

]
+

[
0

0.5

]
u(k)

y(k) = −0.1x1 + 0.5x2.

(29)

3) External disturbance to the system: The nominal system
in (28) with external variable disturbance is:x(k + 1) =

[
x2

x1 − x21

]
+

[
0

1

]
u(k) +

[
0

cos(2k)

]
y(k) = −0.2x1 + x2.

(30)

4) Noisy measurements from the system: The nominal
system in (28) with noisy measurements is:x(k + 1) =

[
x2

x1 − x31

]
+

[
0

1

]
u(k)

y(k) = −0.2x1 + x2 +N (0, y(k − 1)).

(31)

A. Control Approach

Throughout the simulations in this study, we assume the
systems are black-boxes, and we use only input-output data
and some basic properties such as the relative degree. It is
possible to verify with (2) that the relative degree r̄ = 1 for the
systems in (28)–(31). A feed-forward DFNN with hyperbolic
tangent (tanh) activation functions is designed. According to
(17) and (25), DFNN has three inputs (NI = 3) and one
output (NO = 1). In addition, after some heuristic analysis and
experimental trials, the architecture of the network is chosen to
consist of one fuzzification layer with nine neurons (NF = 9),
and two fully connected hidden layers (NL = 2) with 16
neurons (NH = 16) in each layer. The scaling factor α = 0.1
in (24), for all cases.

To collect the training data for the offline pre-training, the
nominal system is controlled by PID controller which has
been tuned by trial-and-error. Thus, 2′000 input-output training
pairs D0(k) =< {x1(k − 1), x2(k − 1), y(k)}, {u(k − 1)} >
are saved. Then, DFNN0 is trained on D0 by using Leven-
berg–Marquardt algorithm. After that, the pre-trained DFNN
controls the system online and, at each iteration, it is updated
on D(k) =< {x1(k), x2(k), y∗(k + 1)}, {u(k) + ∆u(k)} >.

B. Results

To show the efficiency of the proposed approach, the
performances of the developed DFNN with online learning
are compared with the performances of the exact analyti-
cal inverse of the system dynamics, PID controller, type-
1 FNN-based (T1-FNN) controller with Gaussian antecedent
MFs and Levenberg-Marquardt update rules from [15], and
interval type-2 FNN-based (IT2-FNN) controller with elliptic
antecedent MFs and sliding mode control adaptation laws from
[28]. As can be seen from Figs. 6–9, the exact analytical
system inverse is able to track perfectly the reference tra-
jectory. However, in real-world it is difficult, and sometimes
even impossible, to calculate the exact inverse dynamics of the
system. From Fig. 6, it is possible to observe that both DFNN0

and DFNN with online learning are able to track precisely the
desired trajectory of the nominal system. In addition, DFNN0

approximates very accurately the exact inverse of the system
in (6). From Fig. 7, it is possible to observe that DFNN0 is
not able to track the desired trajectory on the system with
modified dynamics, and its performances are worst than the
ones of PID, T1-FNN and IT2-FNN controllers; while DFNN
with online learning is able to learn the new system dynamics
and obtain a good performance. From Fig. 8, it is possible to
observe that PID, T1-FNN and DFNN0 become unstable with
time-varying disturbance; while DFNN with online learning is
able to learn new conditions and obtain a good performance.
From Fig. 9, it is possible to observe that PID controller is
not able to deal with this level of noise; while all T1-FNN,
IT2-FNN, DFNN0 and DFNN are able to control the system.

As can be seen from Table II, the exact analytical system
inverse is able to track the reference trajectory with negligible
error. On the other hand, the DFNN-based controller with
online learning outperforms all PID, T1-FNN, IT2-FNN and
DFNN0 for all tested cases in terms of mean absolute error
(MAE). Only in the case with noisy measurements, DFNN
with online learning tries to learn also the noise which makes
its performances worst than DFNN0.

V. EXPERIMENTAL STUDY

To validate the capabilities of the proposed controller in
Section III, the trajectory following problem of a quadcopter
UAV is considered. The experimental platform used in this
work is Parrot Bebop 2 quadcopter UAV as shown in Fig. 10.
Robot operating system (ROS) is used to communicate with
UAV. The visual-inertial odometry algorithm is used to provide
the UAV’s real-time position at 24Hz. This information is fed

TABLE II
COMPARISON OF DIFFERENT CONTROLLERS IN TERMS OF MAE [m].

Controller System System System System
in (28) in (29) in (30) in (31)

Inverse ∼ 0 ∼ 0 ∼ 0 ∼ 0
PID 0.265 0.386 ∞ ∞
T1-FNN 0.216 0.261 ∞ 0.225
IT2-FNN 0.196 0.225 0.223 0.204
DFNN0 7.53× 10−6 0.505 ∞ 0.097
DFNN 1.01× 10−6 0.090 0.038 0.100
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(a) Tracking performance. (b) Control signal. (c) Tracking error.

Fig. 6. Simulation results for different controllers on the nominal system in (28). It is possible to observe that both DFNN0 and DFNN with online learning
are able to track precisely the desired trajectory of the nominal system. In addition, DFNN0 approximates accurately the exact inverse of the system in (6).

(a) Tracking performance. (b) Control signal. (c) Tracking error.

Fig. 7. Simulation results for different controllers on the nominal system with internal uncertainties in (29). DFNN0 is not able to track the desired trajectory
on the system with modified dynamics. While DFNN with online learning is able to learn the new system dynamics and obtain a good performances.

(a) Simulation performance. (b) Control signal. (c) Tracking error.

Fig. 8. Simulation results for different controllers on the nominal system with external time-varying disturbance in (30). All PID, T1-FNN and DFNN0

become unstable with time-varying disturbance. While DFNN with online learning is able to learn the new conditions and obtain good performances.

(a) Tracking performance. (b) Control signal. (c) Tracking error.

Fig. 9. Simulation results for different controllers on the nominal system with noisy measurements in (31). It is possible to observe that PID controller is
not able to deal with this level of noise. While all T1-FNN, IT2-FNN DFNN0 and DFNN are able to control the system.
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Fig. 10. Illustration of the proposed online learning-based control scheme.
During the online learning phase, DFNN controls the UAV and, by using
the expert knowledge encoded into the fuzzy mapping, improves further the
performance in real-time.

into the ground station computer (CPU: 2.6GHz, 64bit, quad-
core; GPU: 4GB; RAM: 16GB DDR4) where the algorithms
are executed. Once the control signal is computed, it is sent
to the UAV at 100Hz rate.

A. Dynamical Model of Unmanned Aerial Vehicle

The world-fixed frame is FW = {~xW , ~yW ,~zW } and the
body frame is FB = {~xB , ~yB ,~zB}, illustrated in Fig. 10.
The absolute position of UAV p =

[
x y z

]T
is given by

three Cartesian coordinates at its center of mass in FW , and
its attitude o =

[
φ θ ψ

]T
is given by three Euler angles.

The time derivative of the position gives the linear velocity
v =

[
u v w

]T
of UAV expressed in FW . Equivalently,

the time derivative of the attitude gives angular velocity ω =[
φ̇ θ̇ ψ̇

]T
in FW and angular rates ωB =

[
p q r

]T
in

FB . The UAV is controlled by adjusting the total thrust T
along ~zB , and the moments τφ, τθ and τψ on UAV’s center of
mass around ~xB , ~yB and ~zB , respectively.

The dynamical model of UAV is provided in
[29], and it can be rewritten in form of (1), where
x =

[
x y z φ θ ψ u v w p q r

]T
,

u =
[
τφ τθ T τψ

]T
, y = x, f(x) and g(x) are

defined in (32) and (33), respectively [30]. If the attitude
controller as in [31] is included in the dynamical model, then
the virtual control inputs are u =

[
φ θ w r

]T
.

Remark 3. The dynamical system described by (32) and (33)
is nonlinear, coupled, underactuated and open-loop unstable.

B. Monocular Visual-Inertial Localization

Monocular keyframe-based visual simultaneous localization
and mapping (SLAM) has become a key technology for
localization of different types of robots, especially for UAVs.
In the literature, the most representative monocular keyframe-
based visual-inertial SLAM approach is feature-based parallel
tracking and mapping [32]. It has been demonstrated to be
successful in different real-time applications [33].

C. Control Approach

The dynamical system of UAV is subdivided into three
simpler subsystems to reduce the complexity and accelerate
the learning process. Three feed-forward DFNNs are used to
learn the control mapping for each controlled axis: x, y and z,
as depicted in Fig. 10. From the dynamical model of UAV, it is
possible to calculate that the relative degree r̄ = 2. According
to (17) and (25), each DFNN has three inputs (NI = 3) and
one output (NO = 1). In addition, after some heuristic analysis
and experimental trials, the architecture of the network is
chosen to consist of one fuzzification layer with nine neurons
(NF = 9), and two fully connected hidden layers (NL = 2)
with 64 neurons (NH = 64) in each layer and with hyperbolic
tangent (tanh) activation functions.

The inputs to DFNN for the x-axis are the state components
relative to the x-axis, {x(k), u(k), x∗(k+ 2)}, and the output
is the desired pitch angle, {θ∗(k)}. Similarly, the inputs to
DFNN for the y-axis are the state components relative to the
y-axis, {y(k), v(k), y∗(k + 2)}, and the output is the desired
roll angle, {φ∗(k)}. Finally, the inputs to DFNN for the z-
axis are the errors and their time derivatives on the z-axis,
{z(k), w(k), z∗(k+ 2)}, and the output is the desired vertical
velocity, {w∗(k)}.

The error type is an important term in the loss index, and,
in our case, it is chosen as the normalized squared error. The
initialization algorithm is used to bring the neural network to
a stable region of the loss function, and, in our case, it is
selected as the random search. The training algorithm is the
core part of the training, and, in our case, the quasi-Newton
method is the most suitable choice for both offline and online
training. The scaling factor α = 0.1 in (24).

Remark 4. Both DFNN controllers with and without on-
line learning consist of three independent and parallel sub-
networks for x, y and z axes to speed up the learning.

f(x) =
[
u v w p+ sφtθq + cφtθr cφq − sφr sφ

cθ
q +

cφ
cθ
r 0 0 g

Iy−Iz
Ix

qr Iz−Ix
Iy

pr
Ix−Iy
Iz

pq
]T
. (32)

g(x) =


0 0 0 0 0 0 − 1

m (cφcψsθ + sφsψ) − 1
m (cφsψsθ − cψsφ) − 1

mcφcθ 0 0 0
0 0 0 0 0 0 0 0 0 1

Ix
0 0

0 0 0 0 0 0 0 0 0 0 1
Iy

0

0 0 0 0 0 0 0 0 0 0 0 1
Iz


T

. (33)
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To prepare the training samples of the flight data, the system
was controlled by a conventional controller alone, while the
current state, desired state, and control signal was saved as the
labelled output. By using PID controller, 100′000 instances
have been collected in the training dataset for each axis. This
dataset is large enough for our application, however, the pro-
posed method does not have any limitations on the dataset size.
The training data include circular and eight-shaped trajectories
on xy-, xz- and yz-planes with the reference speed of 1m/s.

D. Study Cases

Four circular trajectories with different working conditions
have been tested: slow, fast, near-ground and with payload.
The study cases are designed in a way to exploit different
components of UAV dynamics. Furthermore, the visual-inertial
algorithm for the state estimation produces noisy output [33].
In order to show the efficiency and efficacy of the DFNN-based
controller with online learning, it is compared with a well-
tuned PID controller (used for the collection of training sam-
ples), FNN-based controller with Gaussian antecedent MFs
and Levenberg-Marquardt update rules from [15] and FNN-
based controller with elliptic antecedent MFs and sliding mode
control adaptation laws from [28], and DFNN0 controller
without online training.

Remark 5. For real-time experiments, the inverse dynamics
of the system is not used to control the system, since, in real-
world it is difficult, and sometimes even impossible, to estimate
the exact inverse dynamics of the system.

The first study case is the tracking of the slow circular
trajectory with a radius of 2m on the xy-plane at a velocity of
1m/s which has also been used during the pre-training phase.
This case study is a reference example where UAV operates in
its nominal conditions. The results of the trajectory tracking
for this study case are shown in Fig. 11.

The second study case is the tracking of the fast circular
trajectory with a radius of 2m on the xy-plane at a velocity of
2m/s. In this study case, the fast responses of the controllers
and the robustness of the visual-inertial state estimator to the
motion blur are verified. The results of the trajectory tracking
for this study case are shown in Fig. 12.

The third study case is the tracking of the circular trajectory,
while flying at a height of 0.2m. In this study case, the ground
effect generates an external disturbance on UAV. The results of
the trajectory tracking for this study case are shown in Fig. 13.

The fourth study case is the tracking of the circular tra-
jectory, while flying with a payload (Odroid-C2 on-board
computer on top and office scissors attached to one of the
arms) of 209g. In this study case, the dynamical model of
UAV (mass and moments of inertia) is altered by the payload.
The results of the trajectory tracking for this study case are
shown in Fig. 14.

E. Discussion

A sample of experimental results for five controllers (PID,
T1-FNN from [15], IT2-FNN from [28], DFNN0 and DFNN)
on four different circular trajectories (slow, fast, near-ground

and with payload) are illustrated in Figs. 11–14, respectively. It
is possible to observe from Figs. 11a–14a, that DFNN-based
controller with online training is able to track more closely
the 3D reference trajectory. As visualized from Figs. 11b–
14b, DFNN-base controller has faster responses, since it is
able to estimate the evolution of the system dynamics, and
compute the desired control signal. It is possible to observe
from Figs. 11c–14c, that DFNN-based controller with online
training is able to learn the system dynamics and decrease the
tracking error over time on all tested trajectories. The real-time
experimental video is available at tiny.cc/DFNN.

For the statistical analysis of control performances, the
experiments are repeated five times for each controller-case
combination for a total of 100 experiments under quasi-same
conditions. To compare the trajectory tracking performances, a
box-plot is presented in Fig. 15. It is possible to observe that
on average the DFNN-based controller with online learning
outperforms other controllers on the tested trajectories. It has
to be emphasised that DFNN evolves online from the pre-
trained DFNN0 during the learning process. Moreover, as ex-
pected, DFNN0 has poor performances in the cases which have
not been used for its training. It is also interesting to observe
that the performances of PID controller do not get worse in
case of near-ground and with payload trajectories, because
derivative and integral components can compensate for these
disturbances. Furthermore, the FNN-based controllers (T1-
FNN and IT2-FNN) have similar performances for the slow,
near-ground and with payload trajectories because their fast
learning capabilities can compensate the disturbances coming
from the ground effects and increased mass. The maximum
absolute error is lower for the online DFNN-based controller,
even for the cases unseen during the pre-training. Finally,
DFNN-based controller with online learning has the lowest
variance of the error.

As can be seen from Table III, the DFNN-based controller
with online learning outperforms all PID, T1-FNN, IT2-FNN
and DFNN0 for all tested cases in terms of mean absolute error
(MAE). Averaged results from numerous experiments depict
that the overall improvement of 51%, 59%, 53% and 51% in
terms of MAE is achieved as compared to a well-tuned PID
controller for slow, fast, near-ground and with payload cases,
respectively. While this ratio goes up 21%, 42%, 40% and
46%, when compared to the DFNN0 controller for the same
cases.

Nevertheless, the online DFNN-based controller can learn
promptly the system dynamics, the computing time is still the
main drawback of this controller because of the online back-
propagation. The computing time is polynomially proportional
to the product of the number of hidden layers and the number
of neurons in each hidden layer, i.e., O(NL · N4

H). There-
fore, deeper is the network, more complex functions it can
learn, but more computational power it requires. The average
experimental computation time for DFNN with online back-
propagation is around 9.4ms, while for PID, T1-FNN, IT2-
FNN and DFNN0 without online learning this time is only 8µs,
11µs, 13µs and 32µs, respectively. However, 9.4ms is still an
acceptable time for real-time applications, which allows the
controller to run at 100Hz.

http://tiny.cc/DFNN
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(a) 3D view for the trajectory tracking. (b) Trajectory on x, y and z axes. (c) Euclidean error of the tracking.

Fig. 11. Experimental results for different controllers on the slow circular trajectory at velocity of 1m/s.

(a) 3D view for the trajectory tracking. (b) Trajectory on x, y and z axes. (c) Euclidean error of the tracking.

Fig. 12. Experimental results for different controllers on the fast circular trajectory at velocity of 2m/s.

(a) 3D view for the trajectory tracking. (b) Trajectory on x, y and z axes. (c) Euclidean error of the tracking.

Fig. 13. Experimental results for different controllers on the near-ground circular trajectory at height of 0.2m.

(a) 3D view for the trajectory tracking. (b) Trajectory on x, y and z axes. (c) Euclidean error of the tracking.

Fig. 14. Experimental results for different controllers on the circular trajectory with payload of 209g.
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Fig. 15. Box-plot of the tracking performances of five controllers in four
scenarios. For each controllers-scenarios case, the experiments are repeated
five times under quasi-same conditions. It is possible to observe that DFNN-
based controller with online learning has the lowest maximum absolute error,
even for the cases unseen during the pre-training.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented a novel approach for the control
of dynamical systems that improves system’s control perfor-
mance online by combining deep learning and fuzzy logic.
The learning is subdivided into two phases: offline and online
training. During the offline training phase, a conventional
controller performs a set of trajectories and a batch of training
samples is collected. Then, a DFNN-based controller, DFNN0,
is pre-trained on the collected data samples. However, DFNN0

cannot adapt to new operating conditions different from the
pre-training cases; therefore, online training is required. Dur-
ing the online training phase, DFNN-based controller takes
the control of the system and adapts to improve the tracking
performance. The expert knowledge encoded into the rule-
base, thanks to the derived fuzzy mapping, provides the
adaptation information to DFNN allowing the online learning.
Once DFNNs are trained, the experimental results show that
the proposed approach improves the performance by more than
50% when compared to a conventional controller. We believe
that the results of this study will open doors to a wider use of
DFNN-based controllers in real-world control applications.

APPENDIX A
STABILITY PROOF

Proof. A dynamical system is BIBO stable, if for any bounded
input corresponds a bounded output. In our case, the input is
y∗; while the output is y.

TABLE III
COMPARISON OF DIFFERENT CONTROLLERS IN TERMS OF MAE [m].

Trajectory PID T1-FNN IT2-FNN DFNN0 DFNN
Slow 0.640 0.593 0.568 0.387 0.307
Fast 1.710 1.182 1.265 1.204 0.704
Near-Ground 0.638 0.609 0.601 0.497 0.299
With Payload 0.620 0.555 0.546 0.570 0.306

i) If the controlled system is the nominal system on which
DFNN0 was trained, and if the output from DFNN0,
û(k), accurately approximates the exact inverse of the
system, u(k), i.e., û(k) ≈ u(k); then, the inverse model
update, ∆û(k) ∼ 0. Thus, the control input to the system
is u(k). From (5), it can be shown that the system’s
output, y, can be bounded by:

‖y(k)‖∞ ≤ c1‖x(k)‖∞ + c2‖u(k)‖∞ + c3 ∀k, (34)

where c1, c2 and c3 are some positive constants. By
using Assumption 3, it can be shown that the state of
the dynamical system, x, can be bounded by:

‖x(k)‖∞ ≤ c4‖u(k)‖∞ + c5‖x(0)‖∞ + c6 ∀k, (35)

where c4, c5 and c6 are some positive constants. From (6),
it can be shown that the input to the dynamical system,
u, can be bounded by:

‖u(k)‖∞ ≤ c7‖x(k)‖∞ + c8‖y∗(k)‖∞ + c9 ∀k, (36)

where c7, c8 and c9 are some positive constants. By using
(35) and (36) in (34), the overall closed-loop system in
Fig. 3a is BIBO stable.

ii) If the controlled system is different from the nominal
system on which DFNN0 was trained, or if the output
from DFNN0, û(k), does not approximate accurately the
exact inverse of the system, u(k), i.e., û(k) 6≈ u(k);
then, the inverse model update, ∆û(k) 6= 0. Therefore,
the control input to the system is û(k) + ∆û(k). From
(5), it can be shown that the system’s output, y, can be
bounded by:

‖y(k)‖∞ ≤ c1‖x(k)‖∞ + c2‖û(k) + ∆û(k)‖∞ + c3

≤ c1‖x(k)‖∞ + c2‖û(k)‖∞ + c2‖∆û(k)‖∞ + c3 ∀k.
(37)

By using Assumption 3, it can be shown that the state of
the dynamical system, x, can be bounded by:

‖x(k)‖∞ ≤ c4‖û(k) + ∆û(k)‖∞ + c5‖x(0)‖∞ + c6

≤ c4‖û(k)‖∞ + c4‖∆û(k)‖∞ + c5‖x(0)‖∞ + c6 ∀k.
(38)

From (6), it can be shown that the output from the DFNN
module, û, can be bounded by:

‖û(k)‖∞ ≤
NL∑
i=1

cW,i‖Wi(k)‖∞ + c10 ∀k, (39)

where c10 is some positive constant. It has to be noted
that the inputs to DFNN and FLS modules are bounded
by the Gaussian and triangular MFs in (15) and (22),
respectively. Simultaneously, the output from the FLS
module is bounded by the singleton MFs in Fig. 5b, i.e.:

‖∆û(k)‖∞ ≤ α <∞ ∀k. (40)

By using (38), (39) and (40) in (37), the overall closed-
loop system in Fig. 3b is BIBO stable.

Since both control architectures with and without online
learning are BIBO stable, the overall closed-loop system is
BIBO stable.
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