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Abstract— Fuzzy logic controllers (FLCs) have extensively
been used for the autonomous control and guidance of un-
manned aerial vehicles (UAVs) due to their capability of han-
dling uncertainties and delivering adequate control without the
need for a precise, mathematical system model which is often
either unavailable or highly costly to develop. Despite the fact
that non-singleton FLCs (NSFLCs) have shown more promising
performance in several applications when compared to their sin-
gleton counterparts (SFLCs), most of UAV applications are still
realized by using SFLCs. In this paper, we explore the potential
of both standard and the recently introduced centroid based
NSFLCs, i.e., Sta-NSFLC and Cen-NSFLC, for the control of
a quadcopter UAV under various input noise conditions using
different levels of fuzzifier, and a comparative study has been
conducted using the three aforementioned FLCs. We present a
series of simulation-based experiments, the simulation results
show that the control performances of NSFLCs are better
than those of SFLC, and the Cen-NSFLC outperforms the Sta-
NSFLC especially under highly noisy conditions.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been widely uti-
lized in a variety of civilian applications to save time, money
and even lives, e.g., disaster rescue [1], target tracking [2],
orchard monitoring [3], wildlife protection [4], infrastructure
inspection [5] and 3D environment reconstruction [6]. Most
of the time, to achieve fully autonomous flight in these UAV
applications, classical controllers, e.g. proportional-integral-
derivative (PID) [7], linear quadratic regulators (LQRs) [8]
or sliding mode control (SMC) [9], have been utilized. There
is no doubt that these well-known control algorithms are very
successful when a precise mathematical model of the system
is obtained and no significant internal or external uncertain-
ties exist. On the other hand, modelling of complex dynamics
systems is a tedious, costly and time consuming task [10].
Unfortunately, lack of modeling, uncertainty, inaccuracy in
the sensors, approximation and incompleteness problems
are inevitable in a typical UAV application. For instance,
considerable uncertainties exist in the different types of
onboard UAV sensors, e.g., global positioning system (GPS),
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monocular/stereo cameras, laser range finders (LRFs) and
inertial measurement units (IMUs).

In this study, we explore the potential of both standard and
recently introduced centroid-based variants of non-singleton
FLCs (NSFLCs) to address uncertainty affecting the inputs
of quadcopter UAV control. Although there are a number of
FLC applications for navigating a quadcopter UAV in litera-
ture, e.g., [11], most of these are SFLCs, which focus on high
level navigation, rather than exploring the effect of various
levels of input uncertainty on the control performance. On
the other hand, it is reported in literature that NSFLCs give
more promising results when compared to their singleton
counterparts for non-linear servo system [12], chaotic time
series prediction [13], etc. Both FLCs use the same fuzzy
rule base, inference engine and defuzzifier. However, in the
NSFLC, there is a different fuzzifier which treats the inputs
as fuzzy sets (FSs). In this paper, we employ Gaussian
input fuzzy sets with different standard deviations to capture
different levels of uncertainty.

Another motivation of this investigation is to compare
and contrast the performances of different types of NSFLCs,
in addition to the standard NSFLC (Sta-NSFLC), centroid
NSFLC (Cen-NSFLC) is also used. In spite of Sta-NSFLC
is capable of handling uncertainties by capturing them from
inputs, the adopted prefiltering approach in the Sta-NSFLC
does not offer a fine-grained uncertainty information track-
ing, i.e., the prefilter is not highly sensitive to the shape of
the input of FSs, leading to significant loss of information
regarding the intersection of input and antecedent models.
Therefore, an alternative type of the NSFLC initially de-
veloped in [14], [15], i.e.,Cen-NSFLC, has been developed
for controlling the quadcopter UAV. In [14], [15], the novel
approach to NSFLCs showed promising results in the context
of time-series prediction with different levels of injected
uncertainty. The aim of the work discussed in this paper is
to move beyond simulated levels of uncertainty to real-world
uncertainty affecting real world sensors.

To the best of our knowledge, this is the first time in
the literature that the performances of NSFLCs and SFLCs
are compared for the control of quadcopter UAVs. The rest
of this paper is organized as follows: Section II introduces
the dynamic model of quadcopter UAV. Section III presents
a brief background for the SFLC, Sta-NSFLC and Cen-
NSFLC. Section IV evaluates and discusses the control
performances with these three FLCs under different input
noise levels, where a number of fuzzifiers are explored.
Finally, some conclusions are drawn from this study and
possible future works are also presented in Section V.



II. QUADCOPTER UAV DYNAMICS

In this section, we introduce the configuration, equations
of motion as well low level velocity control of the quad-
copter.

A. Configuration definition

Let the world fixed inertial reference frame be {~xI , ~yI , ~zI}
and the body frame be {~xB , ~yB , ~zB}. The origin of the body
frame is located at the center of mass of the quadcopter. The
axes ~xB and ~yB lie in the plane defined by the centres of the
four rotors and respectively point toward motor 1 and motor
2, as illustrated in Fig. 1. The axis ~zI points downward, as
well as axis ~zB which is opposite to the direction of the total
thrust.
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Fig. 1: Quadrotor model with reference frames.

The four propellers generate four forces (f1, f2, f3 and
f4), directed along the axis of rotation ~zB and with module
proportional to the speed of rotation, and four torques (τ1, τ2,
τ3 and τ4), around the axis of rotation ~zB and with module
proportional to the speed of rotation [16]. The forces and
torques are proportional to the square of the angular speed
of the propeller:

fi = bω2
i , τi = dlω2

i , i = 1, . . . , 4, (1)

where b is the propeller thrust coefficient, d is the propeller
drag coefficient and ωi is the rotational speed of the ith

propeller.
The quadrotor control vector u is considered as follows:

u =
[
T τφ τθ τψ

]T
, (2)

where T is the total thrust and acts along ~zB axis, whereas
τφ, τθ and τψ are the moments acting around ~xB , ~yB and ~zB
axes, respectively. Under these considerations, the relation
between u and ωi, i = 1, . . . , 4, becomes [17]:

T = f1 + f2 + f3 + f4 (3)
τφ = l(−f2 + f4) (4)
τθ = l(f1 − f3) (5)
τψ = −τ1 + τ2 − τ3 + τ4, (6)

where l is the arm length.

The absolute position of a quadcopter (3 DOF) is described
by the three Cartesian coordinates (x, y and z) of its center of
mass in the world frame and its attitude by the three Euler’s
angles (φ, θ and ψ). These three angles are respectively
called roll (−π2 < φ < π

2 ), pitch (−π2 < θ < π
2 ) and yaw

(0 ≤ ψ < 2π).
The time derivative of the position (x, y, z) is given by

V =
[
ẋ ẏ ż

]T
=
[
u v w

]T
, (7)

where V is the absolute velocity of the quadcopter’s center
of mass expressed with respect to the world fixed inertial
reference frame. Let VB ∈ R3 be the absolute velocity of
the quadcopter expressed in the body fixed reference frame.
So, V and VB are related by

V = RVB, (8)

where R ∈ SO(3) is the rotation matrix from the body frame
to the world frame:

R =

cψcθ cψsφsθ − cφsψ sφsψ + cφcψsθ
cθsψ cφcψ + sφsψsθ cφsψsθ − cψsφ
−sθ cθsφ cφcθ

 , (9)

where cθ and sθ denote respectively cos θ and sin θ.
Similarly, the time derivative of the angles (φ, θ, ψ) give

the angular velocities:

ω =
[
φ̇ θ̇ ψ̇

]T
, (10)

and the angular velocities expressed in the body frame are

ωB =
[
p q r

]T
. (11)

The relation between ω and ωB is given by

ω = TωB , (12)

in which T is the transformation matrix given by

T =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

 . (13)

B. Equations of motion of the quadrotor

Using the Newton-Euler equations about the center of
mass, the dynamic equations for the quadcopter are [18]:

mV̇ = Fe (14)
Iω̇B = −ωB × IωB + τ e, (15)

where m is the mass and I is the inertia matrix given by

I =

Ix 0 0
0 Iy 0
0 0 Iz

 , (16)

and Fe is the vector of external forces and τ e is the vector
of external torques. Some calculations yield the following
form for these two vectors



Fe =

− (cosφ sin θ cosψ + sinφ sinψ)T
− (cosφ sin θ sinψ − sinφ cosψ)T

− cosφ cos θT +mg

 (17)

τ e =

τφτθ
τψ

 , (18)

in which g is the gravity acceleration (g = 9.81m/s2).
Using dynamic and kinematic differential equations (8),

(12), (15) and (18), the quadcopter model is obtained [19]
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ẋ = u

ẏ = v

ż = w

φ̇ = p+ sinφ tan θq + cosφ tan θr

θ̇ = cosφq − sinφr

ψ̇ = sinφ
cos θ q + cosφ

cos θ r

u̇ = − 1
m (cosφ cosψ sin θ + sinφ sinψ)T

v̇ = − 1
m (cosφ sinψ sin θ − cosψ sinφ)T

ẇ = − 1
m cosφ cos θT + g

ṗ =
Iy−Iz
Ix

qr + 1
Ix
τφ

q̇ = Iz−Ix
Iy

pr + 1
Iy
τθ

ṙ =
Ix−Iy
Iz

pq + 1
Iz
τψ.

(19)

Hence, the quadrotor’s state x is

x =
[
x y z φ θ ψ u v w p q r

]T
.

(20)

C. Low level velocity control

After the quadcopter dynamic model is identified, the low
level velocity controller is designed. The control law is based
on a proportional-derivative (PD) algorithm. The inputs to the
PD-based attitude controller are the desired linear velocity

V∗ =
[
u∗ v∗ w∗

]T
(21)

and the desired angular velocity ψ̇∗ around the ~zI axes, and
the output is defined in (2).

III. BACKGROUND OF SFLC AND NSFLC

In this section, we present a brief background overview of
the SFLC, Sta-NSFLC and Cen-NSFLC.

A. Structure of FLC

Figure 2 shows the general structure of a FLC. The fuzzy
rule base (purple block), inference engine (grey block) and
defuzzifier (green block) are the same in both NSFLC and
SFLC. However, the difference between SFLC and NSFLC
is the handling of the crisp inputs in the fuzzifier (red block).
The NSFLC maps a given crisp input to a fuzzy input set,
rather than to a fuzzy singleton - as is the case in the SFLC,
i.e. the fuzzifier of SFLC does not model any vagueness in
the input.
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Fig. 2: Overview of FLC structure.

For the SFLC, its fuzzifier is defined as below:

µX(xi) =

{
1, xi = x

′

i

0, xi 6= x
′

i.
(22)

For the NSFLC, the Gaussian distribution is selected for
its fuzzifier in our case, i.e.:

µX(xi) = exp

[
−(xi − x′i)2

2σ2
F

]
, (23)

where x′i is the crisp value of the input and the mean value
of the fuzzy set, and σF is the spread of this set. Larger
values of the spread imply that more noise is anticipated to
exist in the input data.

In the literature, standard NSFLCs have been defined for
both type-1 and type-2 FLCs. However, we limit ourselves
to type-1 non-singleton type-1 FLC in this work, i.e. type-
1 input membership functions (MFs) are adopted for type-1
FLCs. The general mapping between the inputs and outputs
of the FLCs, as the input set X and output set Y are shown
in Fig. 2, is comprehensively introduced in [20]. This paper
will not repeat the details of how the comprehensive formula
for the mapping is derived. Since the prefiltering module of
the NSFLC is the key to handling the input uncertainties, as
shown in Fig. 3, we introduce the details of this prefiltering
module below.

Prefilter Inference 

μC(y) 

μX(x) xmax 
μY(y) 

Fig. 3: Prefiltering of the input FS to a NSFLC.

Specifically, the inference engine of a NSFLC can be
considered as a prefilter module embedded to a SFLC



inference engine. The prefilter module converts the crisp
input in combination with the uncertain input set to a
representive numberical value xmax. The handling of the
input uncertainty of NSFLCs takes place in this prefiltering
module. The other components are the same as the ones in
a SFLC. In the following subsections, we briefly review the
nature of the prefiltering stage for both standard and centroid-
based [14], [15] NSFLCs.

B. Prefiltering module in Sta-NSFLC

Figure 4 provides an example of a single-input, single-
rule and single-output discrete standard NSFLC has been
considered, and the Mamdani implication is utilized.
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Fig. 4: Example of the calculation from input (X), antecedent
(A) and consequent (C) fuzzy sets to output (Y ). (Adapted
from [14], [15])

Let x and y be the members of the input FS (X) and
output FS (Y ), and A and C are two FSs representing an
antecedent and a consequent. The only rule is defined as:

IF x is A THEN y is C. (24)

The µX(x), µA(x), µC(y) and µY (y) are the MFs of X ,
A, C and Y , respectively. Note that we only consider the
Gaussian MFs in this work, then the input-output mapping
is:

µY (y) = µC(y) ?max
x∈X

[µX(x) ? µA(x)] (25)

or

µY (y) = µC(y) ? µX(xmax) ? µA(xmax), (26)

where ? is the t-norm operator and xmax is the value of x
at which µX(x) ? µA(x) takes its maximum.

Taking the minimum-operator as the t-norm, as shown
in Fig. 4, µX(x) ? µA(x) is the intersection of X and A,
and µX(xmax) and µA(xmax) are equal according to the
definition of xmax, (25) can be written as below:

µY (y) = min[µC(y), µA(xmax)] (27)

Equation 27 represents the input-output mapping in the
considered NSFLC. In addition, (27) shows that the firing
level of an antecedent is the maximum of its intersection
with the input set.

C. Prefiltering module in Cen-NSFLC

Figure 5 shows two different input FSs, i.e. X1 and X2,
which are intersected with an antecedent A. Although the
actual input FSs are different, the firing levels calculated by
the standard approach are the same in both cases, as shown
in circle 1 in the Fig. 5. Thus, two different inputs or more
specifically, inputs with a different associated uncertainty
distribution result in the same firing level and thus FLC out-
put. Hence, a method with a more detailed capture of input
certainty and its intersection with the respective antecedent
FS is desirable, i.e. the new method should have a higher
sensitivity to the shape of the intersection.
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Fig. 5: The difference between the Sta-NSFLC and Cen-
NSFLC. (Adapted from [14], [15])

Figure 5 shows how in Sta-NSFLCs the maximum of
the intersection between the antecedent and different input
FSs result in the same xmax and thus the same firing
level. However, the firing strengths in the Cen-NSFLC, i.e.
xcen1 and xcen2, are different when the centroid of each
intersection has been applied instead of their maximum.

Given a discrete FS X with a MF xX(xi), the Centroid
is defined as below:

xcen(X) =

∑n
i=1 xiµX(xi)∑n
i=1 µX(xi)

, (28)

where n is the number of discretization levels (n = 100 in
our case) utilized in a discrete system.

As detailed in [14], [15], the centroid of the intersection
of an input X and an antecedent A, i.e. centroid of X ∩A,
the new input/output mapping is defined as:

µY (y) = µX∩A(xcen(X ∩A)) ? µC(y). (29)

Alternatively, for minimum t-norm:

µY (y) = min[µX∩A(xcen(X ∩A)), µC(y)]. (30)

The above formulas represent that the firing level of an
antecedent is the membership degree of its intersection with
the input set at the centroid point of intersection.



IV. SIMULATION STUDIES

A series of quadcopter UAV simulation experiments are
discussed using the SFLC, Sta-NSFLC and Cen-NSFLC
introduced in the previous sections. Figure 6 shows the block
diagram of the experimental setup where the output from
each FLC, i.e., desired velocity (21), is sent as input to
the UAV’s velocity controller. A number of tests are made
considering different levels of noise and fuzzifier for the
FLCs.

A. Intrinsic parameters of the Quadcopter and its Initial
State

Table I shows the quadcopter’s intrinsic parameters, which
are used in (1) and (19). These parameters are chosen to be
close to the ones of a real quadcopter.

TABLE I: The quadcopter’s intrinsic parameters.

Parameter Value Unit
b 10−5 [N · s2]
d 10−7 [N ·m · s2]
Ix 1 [kg ·m2]
Iy 1 [kg ·m2]
Iz 1 [kg ·m2]
l 0.2 [m]
m 1 [kg]

The quadcopter is first hovering, therefore, the quadcopter
initial state of (20) is

x0 =
[

0 0 0 0 0 0 0 0 0 0 0 0
]T
.

B. Uncertainty Sources in Measurements

In our paper, the goal is to control the position and
yaw angle of the quadcopter (x, y, z, ψ) without considering
external disturbances, e.g., wind. Therefore, we need to
measure the actual position and yaw angle of the quad-
copter (x, y, z, ψ). In order to obtain these measurements we
simulate a key set of standard onboard quadcopter sensors
with different levels of noise. In our case the noise level is

characterised by its standard deviation σN . Hence, we can
convert σN to SNR, which is also commonly used to describe
the noise, using the following relation:

SNR = 10 log10

(
1

σ2
N

)
. (31)

In order to have the measurement of the quadcopter’s
position (x̄, ȳ and z̄) we simulate the GPS. To produce the
noisy position measurements we add white Gaussian noise
to the true position:

x̄ = N (x, σ2
N ) (32)

ȳ = N (y, σ2
N ) (33)

z̄ = N (z, σ2
N ), (34)

whereN (µ, σ2) is the Gaussian distribution with mean µ and
variance σ2. Our simulated GPS computes a new position
every 100ms, as the real one.

To measure the yaw angle of the quadcopter ψ̄, we
simulate the IMU. The IMU provides us the measurements of
orientation (φ̄, θ̄ and ψ̄) and angular velocities in body frame
(p̄, q̄ and r̄). In order to produce the noisy measurements for
the yaw angle we also add white Gaussian noise to the true
yaw angle:

ψ̄ = N
(
ψ, σ2

N (1 + 3r)
2
)
. (35)

C. Fuzzifiers for NSFLC

As the fuzzifier discussed in Section III, the Gaussian
distribution is applied for the inputs of the NSFLCs. Figure
7 shows the different levels of fuzzifier utilized in our exper-
iments, representing different levels of expected uncertainty
or noise.

D. Membership Function and Rule Base of FLC

In our work, Gaussian distribution is employed for the
input and output membership functions (MFs) of FLC. Each
input variable, i.e., error or time derivative of the error, has
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Fig. 6: Experimental setup for quadcopter UAV control performance evaluations using the SFLC, Sta-NSFLC and Cen-
NSFLC.
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five MFs, and the output variable has seven MFs. Table II
shows the rule base of FLC, as utilized in [21], where each
abbreviation N, Z, P, B, M or S represents negative, zero,
positive, big, medium or small, respectively.

TABLE II: Rule Base of FLC

Dot error/error BP SP Z SN BN
BP BN BN MN SP SP
SP BN BN SN SP SP
Z MN MN Z MP MP

SN SN SN SP BP BP
BN SN SN MP BP BP

E. Performance Evaluation
The control performance evaluation is carried out in terms

of the mean squared error (MSE) of the 3D position, epos:

epos =
1

n

n∑
k=1

√
(x(k)− x∗)2 + (y(k)− y∗)2 + (z(k)− z∗)2,

(36)
where x(k), y(k) and z(k) are the translations along x-,
y- and z-axis, and x∗, y∗ and z∗ represent the desired 3D
position. And the mean absolute error (MAE) of yaw angle,
eyaw:

eyaw =
1

n

n∑
k=1

|ψ(k)− ψ∗| (37)

where ψ(k) is the yaw angle and ψ∗ represents the desired
yaw angle.

F. Results
To illustrate the performance comparison of the different

FLCs, the obtained results are presented in Table III and
Table IV. Figure 8 shows four visualised results of the
squared errors in 3D position and absolute errors in yaw
angle under different input noise levels (σN ). In general,
the control performances of NSFLCs are better than the
ones of SFLC. When we increase the spread parameter (σF ,
as the parameters shown in the brackets in Fig. 8) for the
fuzzifier in the NSFLC, the performance of the NSFLC gets
better, and the Cen-NSFLC outperforms the Sta-NSFLC,
especially with larger input noise levels. Finally, we can
observe that all the FLCs provide better performances when
noise level decreases. In addition, we can also clearly find
the performance differences among the SFLC, Sta-NSFLC
and Cen-NSFLC in Fig. 9 below.
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Fig. 9: Performance comparison of SFLC and NSFLCs.

V. CONCLUSION AND FUTURE WORK

In this paper, a comprehensive evaluation of quadcotper
UAV control performance has been conducted with three
different types of FLCs, i.e., a SFLC and two novel NSFLCs
(Sta-NSFLC and Cen-NSFLC), under different levels of
input noise (uncertainty). The objective of this work was not
only to evaluate the performances of the Sta-NSFLC and the
SFLC, but also to compare the control performances between
the Sta-NSFLC and the Cen-NSFLC. The extensive simu-
lated experiments show that the Sta-NSFLC outperforms the
SFLC in the most of cases, and the Cen-NSFLC can obtain
better control performances compared to the Sta-NSFLC,
especially at the higher input noise levels. Additionally, the
various levels of fuzzifier show the different capabilities to
capture a specified amount of uncertainty, i.e. the higher level
fuzzifier has more capability to manage higher level input
noise. These results support the results in [14], [15].

For future work, we will focus on conducting experi-
ments on real-world quadcopter UAVs while also exploring
different Type-2 FLCs for navigating quadcopter UAV, and
compare their performances in a variety of input noise levels.
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Fig. 8: Squared errors of 3D position and absolute errors of yaw angle. The parameter in the bracket is the standard deviation
σF for the fuzzifier in the NSFLC.



TABLE III: Average MSE of 3D Positiion (Unit: Meter)

FLC / Noise Level (σN ) 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Singleton FLC 1.4447×10−15 0.2035 0.3930 0.4813 0.6678 0.7871 0.9152 1.0040 1.0393

Sta-NSFLC (σF =0.25) 1.2694×10−12 0.1501 0.2900 0.4366 0.5830 0.7708 0.9088 1.0823 1.2533
Cen-NSFLC (σF =0.25) 1.8813×10−12 0.1663 0.3057 0.4272 0.5422 0.7080 0.8303 0.9975 1.1680
Sta-NSFLC (σF =0.5) 1.9668×10−12 0.1506 0.2555 0.4113 0.5477 0.6580 0.8138 0.9816 1.0387
Cen-NSFLC (σF =0.5) 1.6627×10−12 0.1125 0.2158 0.3308 0.4059 0.5500 0.6164 0.7262 0.8465
Sta-NSFLC (σF =0.75) 1.1863×10−12 0.1365 0.2486 0.3840 0.4853 0.6121 0.7504 0.8810 1.0028
Cen-NSFLC (σF =0.75) 1.8213×10−13 0.0999 0.1885 0.2627 0.3500 0.4329 0.5442 0.6316 0.7289

Sta-NSFLC (σF =1) 1.6388×10−12 0.1163 0.2403 0.3609 0.4867 0.6027 0.6915 0.8338 0.9023
Cen-NSFLC (σF =1) 1.7542×10−12 0.0930 0.1672 0.2472 0.3381 0.3980 0.4648 0.5339 0.5957

Sta-NSFLC (σF =1.25) 1.3936×10−14 0.1246 0.2356 0.3515 0.4582 0.5721 0.6941 0.8215 0.9192
Cen-NSFLC (σF =1.25) 1.4813×10−14 0.1024 0.1777 0.2471 0.3133 0.4079 0.4598 0.5695 0.6125
Sta-NSFLC (σF =1.5) 1.4123×10−14 0.1197 0.2143 0.3410 0.3929 0.5487 0.6837 0.8117 0.8989
Cen-NSFLC (σF =1.5) 2.3086×10−14 0.0877 0.1503 0.2219 0.2976 0.3907 0.4384 0.5102 0.6427
Sta-NSFLC (σF =1.75) 1.5418×10−12 0.1080 0.1975 0.3294 0.4249 0.5587 0.6395 0.7674 0.8269
Cen-NSFLC (σF =1.75) 1.2412×10−12 0.0805 0.1630 0.2133 0.2793 0.3842 0.4314 0.5260 0.6289

Sta-NSFLC (σF =2) 1.7693×10−14 0.1123 0.2111 0.3071 0.3767 0.5121 0.6545 0.6760 0.7853
Cen-NSFLC (σF =2) 1.7184×10−14 0.0748 0.1462 0.2100 0.2846 0.3520 0.4063 0.5033 0.5608

TABLE IV: Average MAE of Yaw (Unit: Radian)

FLC / Noise Level (σN ) 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Singleton FLC 8.3566×10−16 0.0157 0.0320 0.0491 0.0753 0.1152 0.1344 0.1629 0.2256

Sta-NSFLC (σF =0.25) 7.3227×10−13 0.0144 0.0356 0.0515 0.0669 0.0707 0.0972 0.1042 0.1174
Cen-NSFLC (σF =0.25) 1.0855×10−12 0.0309 0.0377 0.0626 0.0758 0.0871 0.0951 0.1030 0.1155
Sta-NSFLC (σF =0.5) 1.1355×10−12 0.0237 0.0408 0.0488 0.0716 0.0702 0.0973 0.1090 0.1142
Cen-NSFLC (σF =0.5) 9.5998×10−13 0.0136 0.0348 0.0398 0.0500 0.0670 0.0730 0.0782 0.0908
Sta-NSFLC (σF =0.75) 6.8491×10−13 0.0177 0.0256 0.0418 0.0512 0.0610 0.0721 0.1019 0.0970
Cen-NSFLC (σF =0.75) 1.0515×10−13 0.0142 0.0232 0.0309 0.0360 0.0437 0.0543 0.0583 0.0706

Sta-NSFLC (σF =1) 9.4595×10−13 0.0199 0.0285 0.0448 0.0688 0.0651 0.0817 0.0957 0.1031
Cen-NSFLC (σF =1) 1.0128×10−12 0.0148 0.0205 0.0322 0.0462 0.0501 0.0555 0.0608 0.0826

Sta-NSFLC (σF =1.25) 8.0445×10−15 0.0188 0.0286 0.0355 0.0509 0.0550 0.0661 0.0819 0.0989
Cen-NSFLC (σF =1.25) 8.5523×10−15 0.0140 0.0228 0.0271 0.0323 0.0387 0.0432 0.0479 0.0573
Sta-NSFLC (σF =1.5) 8.1205×10−15 0.0112 0.0222 0.0347 0.0436 0.0532 0.0697 0.0809 0.0743
Cen-NSFLC (σF =1.5) 1.3331×10−14 0.0092 0.0165 0.0241 0.0306 0.0314 0.0445 0.0490 0.0479
Sta-NSFLC (σF =1.75) 8.9016×10−13 0.0107 0.0187 0.0346 0.0474 0.0579 0.0591 0.0767 0.0849
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Sta-NSFLC (σF =2) 1.0358×10−14 0.0121 0.0225 0.0304 0.0409 0.0542 0.0629 0.0740 0.0823
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