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Abstract—A significant number of investigations of type-1 and
type-2 fuzzy logic controllers have revealed their exceptional
ability to capture uncertainties in complex and nonlinear systems,
particularly in real-time control applications. However, regardless
of being type-1 or type-2, fuzzy logic controller design is still a
complicated task due to the lack of a closed form solution of
the output and an interpretable relationship between the control
output and fuzzy logic controller design parameters, such as
center or width of the membership functions. To simplify the
design procedure further, we think every attempt to obtain such
interpretable relationships is worthwhile. Accordingly, this paper
aims to design a double-input interval type-2 fuzzy PID controller
and obtain interpretable relationships between the input and the
output of the controller. Thereafter, we deploy the novel design
for the control of a Y6 coaxial tricopter unmanned aerial vehicle.
Simulation results, which are realised in robot operating system
(ROS) using C++ and Gazebo environment, are found to tally
with the theoretical analysis and claims in the paper.

I. INTRODUCTION

Fuzzy logic controllers (FLCs) have become one of the
most popular model-free control structures, and have been
proposed as an alternative approach to conventional model-
based controllers when it is challenging to obtain the precise
mathematical model of the system [1], [2]. This is due
to several characteristics of FLCs, inter-alia, improving the
robustness and flexibility of the nonlinear control system in
the presence of uncertainties and external disturbances using
expert knowledge throughout the controller design. Many
researchers recently put significant attention toward more
advanced forms of FLCs, such as type-2 FLCs (T2-FLCs) [3],
[4]. T2-FLCs can be used to handle uncertainties better in the
system, e.g., noisy measurements, due to the additional degree
of freedom provided by the footprint of uncertainty (FOU) in
their fuzzy sets (FSs) [5]. The interval T2-FLCs (IT2-FLCs)
have received more consideration because the mathematics that
is needed for IT2-FLCs – primarily interval arithmetic – is
much simpler than that of general T2-FLCs [6]. The use of
IT2-FLC helps to decrease the computation time which is a big
advantage in real-time on-board control applications [7]. Thus,
several studies have been presented to analyse the effect of the
FOU on the type-2 fuzzy mapping (FM) [8]. To generate the
desired FM, evolutionary algorithms have been employed [9].
The main drawback of these approaches is the lack of under-
standing of how the FOU parameters affect the robustness and
performance of the IT2-FLC [10]. Undoubtedly, the derivation

of FM for IT2-FLC in an analytical form can provide an
efficient tool to examine the IT2-FLC. The FM for single
input IT2-FLCs (SI-IT2-FLCs) has been recently derived and
analysed in [11]. However, the analytical derivation of the FM
was restricted to single input structure only, and for double
input IT2-FLCs (DI-IT2-FLC) is still missing in the literature.

In this paper, we have explicitly derived an FM for DI-
IT2-FLC, composed of nine rules commonly preferred in the
literature, to investigate its robustness based on its analytical
representation. The proposed analytical closed form relation-
ship between the input and the output of the fuzzy controller
provides an explanation on the role of the FOU parameters.
Furthermore, the presented analytical design method allows
to generate control surfaces (CSs) by altering only the size
of FOU without any optimisation procedure. Moreover, it
is shown that various controllers with more aggressive or
less aggressive behaviour can be developed by tuning only
two FOU parameters, thereby providing a certain degree of
robustness and stability to the system.

In this paper, double input interval type-2 fuzzy PID (DI-
IT2-FPID) controllers, which make use of DI-IT2-FLCs, are
elaborated in terms of their design simplicity as well as in-
terpretability. A realistic application of DI-IT2-FPID is shown
for the trajectory tracking problem of Y6 coaxial tricopter un-
manned aerial vehicle (UAV). Unlike the conventional robotic
applications, such as robotic manipulators, where the system
model perfectly describes the overall system dynamics, UAVs
are subject to inevitable uncertainties, e.g., global positioning
system (GPS) and inertial measurement unit (IMU) measure-
ments, wind and gust conditions. In this paper, our main goal
is to give a novel analysis for DI-IT2-FLC rather than compare
its performance with its type-1 counterpart. Hence, different
parameter settings (PSs) for the DI-IT2-FPID controller are
tested to investigate their control performances. To the best
of our knowledge, for the first time, an FM for DI-IT2-FLC
is derived, analysed, implemented in robot operating system
(ROS) and tested in Gazebo simulator.

This paper is organised as follows. Section II briefly reviews
the definition of IT2-FLC and, in particular, DI-IT2-FLC. In
Section III, an FM for DI-IT2-FLC is derived and analysed.
Section IV provides dynamical simulations with Y6 coaxial
tricopter UAV in order to prove the theoretical claims. Finally,
Section V closes this paper with conclusions and future works.



II. DOUBLE INPUT INTERVAL TYPE-2 FLC

In this section, we introduce some important definitions [2]
for IT2-FLC, which will be used in the rest of this paper.

Definition 1: An interval type-2 FS (IT2-FS) Ã is de-
scribed by an interval type-2 membership function (MF),
µÃ(σ, u) = 1, for example in Fig. 1a, where σ ∈ Σ and
u ∈ Uσ ⊆ [0, 1], i.e.:

Ã = {(σ, u, 1) | ∀σ ∈ Σ,∀u ∈ Uσ ⊆ [0, 1]} . (1)

Definition 2: Uncertainty in each FS Ã consists of a
bounded region (grey area in Fig. 1a) which is the FOU and
it is a union of all µÃ(σ, u), i.e.:

FOU(Ã) =
⋃
σ∈Σ

Uσ. (2)

Definition 3: The MF which upper bounds FOU(Ã) (red
lines in Fig. 1a) is called upper MF (UMF) of Ã and is denoted
µÃ(σ),∀σ ∈ Σ; while the MF which lower bounds FOU(Ã)
(blue lines in Fig. 1a) is called lower MF (LMF) of Ã and is
denoted µ

Ã
(σ),∀σ ∈ Σ, i.e.:{

µÃ(σ) = FOU(Ã) ∀σ ∈ Σ

µ
Ã

(σ) = FOU(Ã) ∀σ ∈ Σ.
(3)

Note that for an IT2-FS, Uσ = [µ
Ã

(σ), µÃ(σ)],∀σ ∈ Σ [12].
Definition 4: For DI-IT2-FLC, the i-th rule Ri ∈ R, i =

1, . . . , N , can be expressed as an IF− THEN statement, i.e.:

Ri : IF σ1 is Ã1,i and σ2 is Ã2,i, THEN ϕ is Ci. (4)
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Ãj,1 = N 1
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Ãj,2 = Z

αj

Ãj,3 = P

(a) Triangular MFs of IT2-FLCs.
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(b) Singleton IT2 MFs.

Fig. 1. Antecedent and consequent MFs of IT2-FLC.

Definition 5: For DI-IT2-FLC, the firing set of the i-th
rule Fi(σ) = [f

i
(σ); f i(σ)] is{

f i(σ) = µA1,i
(σ1)× µA2,i

(σ2)

f
i
(σ) = µ

A1,i
(σ1)× µ

A2,i
(σ2).

(5)

Definition 6: An FM from σ ∈ Rn to ϕ ∈ R is a function
ϕ(σ) : Rn → R.

Once we determine the rules in (4), a DI-T2-FLC can be
seen as a quantitative FM from crisp inputs σ =

[
σ1 σ2

]T
to crisp output ϕ. In our case, the antecedent MFs are defined
as triangular IT2-FSs, as depicted in Fig. 1a. The conventional
way to represent triangular IT2-FSs is

µÃi
(σj) =


σj−ai−1

ai−ai−1
, ai−1 ≤ σj ≤ ai

ai+1−σj

ai+1−ai , ai < σj ≤ ai+1

0 , σj < ai−1, ai+1 < σj

(6)

µ
Ãj,k

(σj) = mj,kµÃj,k
(σj), (7)

where ak are the cores of the triangular MFs and mj,k

represent the height of the lower MFs [11]. However, for our
analysis, we need complex symbolic computations, therefore,
a new equivalent algebraic definition of (6) is needed [13]:

µÃj,k
(σj) = max

(
min

(
σj − ai−1

ai − ai−1
,
ai+1 − σj
ai+1 − ai

)
, 0

)
, (8)

in which min and max functions are also redefined as:{
min (a, b) = a+b−|a−b|

2

max (a, b) = a+b+|a−b|
2 .

(9)

In this paper, symmetrical MFs are employed to simplify the
design complexity. In this context, we define mj,k as follows:

mj,1 = mj,2 = mj,3 = αj . (10)

Thus, αj is the only parameter to be tuned for each input σj .
The consequent MFs are singleton and depicted in Fig. 1b.

The structure of DI-IT2-FPID controller is shown in Fig. 2.
The DI-IT2-FPID inherits DI-IT2-FLC with α1 and α2. Here,
the scaling factors kp and kd are defined such that the inputs
e and ė are normalized to the domain of the antecedent MFs,
i.e., [−1, 1]. Thus, the error e and the derivative of the error ė
are converted after normalisation into σ1 and σ2, respectively,
which are the inputs to the DI-IT2-FLC. Thereafter, its output
ϕ is converted into the control signal v. Thus, in this control
structure, only four parameters have to be tuned, i.e., α1, α2,
k1 and k2, and the number of parameters is the same as for
SI-IT2-FPID in [11].

kd

kp
DI-IT2-FLC

(α1, α2)

k1

k2

∫ +

e

ė

σ1

σ2

ϕ

v1

v2

v

Fig. 2. Structure of DI-IT2-FPID controller.



III. DERIVATION AND ANALYSIS OF DI-IT2-FLC

A. Derivation of DI-IT2-FLC

Let the defuzified output of IT2-FLC be, as in [2]:

ϕ(σ) =
ϕL(σ) + ϕR(σ)

2
, (11)

where ϕL and ϕR are the left and right end points of the
type-reduced set and they can be computed with centroid type
reduction technique using Karnik-Mendel algorithm [14]:

ϕL(σ) =

∑L
i=1 f i(σ)Ci +

∑N
i=L+1 f i(σ)Ci∑L

i=1 f i(σ) +
∑N
i=L+1 f i(σ)

ϕR(σ) =

∑R
i=1 f i(σ)Ci +

∑N
i=R+1 f i(σ)Ci∑R

i=1 f i(σ) +
∑N
i=R+1 f i(σ)

,

(12)

in which R and L are the switching points. Using common
and typical nine rules in Table I [15], three different cases for
L and R can be found, i.e., {L = 3, R = 3}, {L = 3, R = 6}
and {L = 6, R = 6}. For each case we will have a region (Ω1,
Ω2, Ω3) on the [σ1 × σ2] plane, as shown in Fig. 3. Hence,
Ω1, Ω2 and Ω3 are analytically defined as:

Ω1 =
{
{σ1, σ2} ∈ [−1, 1]2 | σ2 ≥ −1, σ2 ≤ ω12(σ1)

}
Ω2 =

{
{σ1, σ2} ∈ [−1, 1]2 | σ2 > ω12(σ1), σ2 < ω23(σ1)

}
Ω3 =

{
{σ1, σ2} ∈ [−1, 1]2 | σ2 ≥ ω23(σ1), σ2 ≤ 1

}
,

(13)

where ω12 and ω23 are contours which separate Ω1 from Ω2

and Ω2 from Ω3, respectively. Each region is associated with
an FM, i.e., ϕ1(σ), ϕ2(σ) and ϕ3(σ), respectively. Therefore,
ϕ(σ) can be decomposed using (11):

ϕ(σ) =


ϕ1(σ) = ϕL=3(σ)+ϕR=3(σ)

2 , σ ∈ Ω1

ϕ2(σ) = ϕL=3(σ)+ϕR=6(σ)
2 , σ ∈ Ω2

ϕ3(σ) = ϕL=6(σ)+ϕR=6(σ)
2 , σ ∈ Ω3.

(14)

The formulation in (14) reduces the design of DI-IT2-
FLC into a generation of CS. As shown in Fig. 1a, DI-IT2-
FLC employs fully overlapping IT2-FSs. Consequently, it is
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Fig. 3. Three control regions of DI-IT2-FM and their contours.

TABLE I
A TYPICAL RULE BASE OF DI-IT2-FLC.

Derivative error, σ2
Proportional error, σ1

(N)egative (Z)ero (P)ositive
(N)egative (N)egative (N)egative (Z)ero
(Z)ero (N)egative (Z)ero (P)ositive
(P)ositive (Z)ero (P)ositive (P)ositive

guaranteed that crisp inputs σj always belong to at most two
successive IT2-FSs. Therefore, we are able to find FM ϕ(σ) in
a closed form. Once we derive ϕL=3(σ), ϕL=6(σ), ϕR=3(σ)
and ϕR=6(σ) with (12):

ϕL=3(σ) =
σ1 (σ2 + 1)− σ1σ2 + σ2 (σ1 + 1)

α1α2 (σ1 + 1) (σ2 + 1)− σ1 − σ2 (σ1 + 1)

ϕL=6(σ) =
α1α2σ2 − α1α2σ1 (σ2 − 1)

(σ1 − 1) (σ2 − 1) + α1α2 (σ1 + σ2 − σ2σ1)

ϕR=3(σ) =
α1α2σ1 + α1α2σ2 (σ1 + 1)

(σ1 + 1) (σ2 + 1)− α1α2 (σ1σ2 + σ1 + σ2)

ϕR=6(σ) =
σ1 (1− σ2) + σ1σ2 − σ2 (1− σ1)

α1α2 (σ1 − 1) (σ2 − 1)− σ1 − σ2 (σ1 − 1)
,

(15)

ϕ1(σ), ϕ2(σ) and ϕ3(σ) can be computed with (14):

ϕ1(σ) =
1

2

α1α2 (σ1σ2 − σ1 − σ2)

(σ1 − 1) (σ2 − 1) + α1α2σ1 − α1α2σ2 (σ1 − 1)

+
1

2

σ1σ2 − σ1 − σ2

σ1 + σ2 − σ1σ2 + α1α2 (σ1 − 1) (σ2 − 1)

ϕ2(σ) =
1

2

σ2 (σ1 + 1)− α1α2σ1 (σ2 − 1)

σ2 (σ1 + 1)− α1α2σ1 − α1α2 (σ1 + 1) (σ2 − 1)

− 1

2

σ1 (σ2 − 1)− α1α2σ2 (σ1 + 1)

σ1 (σ2 − 1) + α1α2σ2 − α1α2 (σ1 + 1) (σ2 − 1)

ϕ3(σ) =
1

2

α1α2 (σ1 + σ2 − σ1σ2)

(σ1 − 1) (σ2 − 1) + α1α2σ1 − α1α2σ2 (σ1 − 1)

− 1

2

σ1σ2 − σ1 − σ2

σ1 + σ2 − σ1σ2 + α1α2 (σ1 − 1) (σ2 − 1)
.

(16)

Finally, ω12 and ω23 are computed by using the definition
ω12 =

{
σ ∈ [−1, 1]2 | ϕR=3(σ) = ϕR=6(σ)

}
and ω23 ={

σ ∈ [−1, 1]2 | ϕL=3(σ) = ϕL=6(σ)
}

:

ω12(σ1) =

{
−σ1

σ1+α1α2−α1α2σ1
, σ1 < 0

−α1α2σ1

σ1−α1α2σ1+1 , σ1 ≥ 0

ω23(σ1) =

{
−σ1

α1α2−σ1+α1α2σ1
, σ1 < 0

−α1α2σ1

α1α2σ1−σ1+1 , σ1 ≥ 0.

(17)

Thus, instead of using DI-IT2-FLC as a black box, we can use
an explicit representation of DI-IT2-FLC in (14), i.e., ϕ(σ).

The control surfaces, which map the two inputs σ1 and σ2

to the output ϕ, are shown in Fig. 4. It can be observed that it
is possible to easily generate different types of control surfaces
by simply tuning the two FOU parameters α1 and α2.

Remark 1: For illustrative simplicity we assume α1 =
α2. On the other hand, as can be seen from (16) and (17),
they are utterly independent.
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Fig. 4. Illustration of the control surfaces with different values of α1 and α2.

B. Analysis of DI-IT2-FLC

The gradient of ϕ(σ) is δ(σ) = ∇ϕ(σ). We define the
aggressiveness of a CS as the value of δ(σ) in the neigh-
bourhood of (0, 0) and in the direction of the unit vector

ŵ =
[

1√
2

1√
2

]T
:

δT (0, 0)ŵ =

√
2

2

(
α1α2 +

1

α1α2

)
. (18)

Therefore, if we decrease α1 and/or α2, the DI-IT2-FLC
will have a more aggressive behaviour around (0, 0); while
increasing α1 and/or α2, the response of DI-IT2-FLC around
(0, 0) will be smoother, as can be seen also from Fig. 5.

Remark 2: If ϕ(σ) is continuous for all α1 and α2 in
(0, 1], then ϕ(σ) can be used as a control function.

Lemma 1: If ϕL=3(σ), ϕL=6(σ), ϕR=3(σ) and
ϕR=6(σ) denote the left and right FMs of the type-reduced
set, ω12 is the switching border between ϕR=3(σ) and
ϕR=6(σ), and ω23 is the switching border between ϕL=3(σ)
and ϕL=6(σ), then{

ϕL=3(σ) = ϕL=6(σ) = 0 ∀σ | σ2 = ω23(σ1)

ϕR=3(σ) = ϕR=6(σ) = 0 ∀σ | σ2 = ω12(σ1).
(19)
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Fig. 5. Sections of control surfaces with different values of α1 and α2.

Proof: Substituting (17) in (15), we can check
that ϕR=3(σ1, ω12(σ1)) = 0, ϕR=6(σ1, ω12(σ1)) = 0,
ϕL=3(σ1, ω23(σ1)) = 0 and ϕL=6(σ1, ω23(σ1)) = 0.

Theorem 1: If ϕ(σ) denotes FM of DI-IT2-FLC, then
ϕ(σ) is a continuous FM in the region [−1, 1]2 with respect
to its input variable σ, i.e., ϕ ∈ C0([−1, 1]2).

Proof: We can observe from (15) that ϕL=3(σ),
ϕL=6(σ), ϕR=3(σ) and ϕR=6(σ) have no vertical asymptotes
in their domains of definition, i.e., Ω1 ∪ Ω2, Ω3, Ω1 and
Ω2 ∪ Ω3, respectively. In other words,

lim
σ→c

ϕL=3(σ) = ϕL=3(c) ∀σ ∈ Ω1 ∪ Ω2

lim
σ→c

ϕL=6(σ) = ϕL=6(c) ∀σ ∈ Ω3

lim
σ→c

ϕR=3(σ) = ϕR=3(c) ∀σ ∈ Ω1

lim
σ→c

ϕR=6(σ) = ϕR=6(c) ∀σ ∈ Ω2 ∪ Ω3;

(20)

therefore, ϕL=3(σ) is continuous on Ω1 ∪ Ω2, ϕL=6(σ) is
continuous on Ω3, ϕR=3(σ) is continuous on Ω1 and ϕL=6(σ)
is continuous on Ω2 ∪ Ω3.

Moreover, from Lemma 1 we have that lim
σ→c

ϕL=3(σ) =

lim
σ→c

ϕL=6(σ) = 0 ∀c = [c1, c2] | c2 = ω23(c1) and
lim
σ→c

ϕR=3(σ) = lim
σ→c

ϕR=6(σ) = 0 ∀c = [c1, c2] | c2 =

ω12(c1). Therefore, we have the continuity also on the border
ω23 for ϕL(σ) and on the border ω12 for ϕR(σ). Thus, ϕL(σ)
and ϕR(σ) are continuous functions in the region [−1, 1]2, i.e.,
ϕL ∈ C0([−1, 1]2) and ϕR ∈ C0([−1, 1]2).

Finally, from the Theorem of Continuous Functions we
know that the sum of a finite number of continuous functions
is a continuous function. From the definitions in (14), ϕ1(σ),
ϕ2(σ) and ϕ3(σ) are sums of ϕL=3(σ), ϕL=6(σ), ϕR=3(σ)
and ϕR=6(σ), which are continuous. Therefore, also ϕ1(σ),
ϕ2(σ) and ϕ3(σ) are all continuous functions in the region
[−1, 1]2, i.e., ϕ1 ∈ C0([−1, 1]2), ϕ2 ∈ C0([−1, 1]2) and
ϕ3 ∈ C0([−1, 1]2). Using the definitions in (14), ϕ(σ) is a
composition of ϕ1(σ), ϕ2(σ) and ϕ3(σ) which are continu-
ous; therefore, also ϕ(σ) is a continuous function in the region
[−1, 1]2, i.e., ϕ ∈ C0([−1, 1]2).

Corollary 1: If the control inputs e and ė to DI-IT2-FPID
in Fig. 2 are continuous, then the control output v will also
be continuous.



IV. CASE STUDY

A. Y6 Coaxial Tricopter UAV Control Scheme

For the dynamical simulations, the Y6 coaxial tricopter
model is implemented in ROS environment and Gazebo simu-
lator, which provides a seamless connection for the developed
algorithms between the simulation and real-world applications.
The overall structure of the closed-loop control scheme is
illustrated in Fig. 6. It consists of three blocks in series:
position controller, velocity controller and tricopter itself. For
the velocity control, the nonlinear geometric controller on
Euclidean group SE(3) is used [16]. The velocity controller
computes the control input u from the UAV’s attitude o, its
linear velocity v, angular velocity in body frame ωB and de-
sired linear velocity v∗ =

[
v∗x v∗y v∗z

]T
. For the equations

of motion of the UAV as well as the system parameters, the
reader is kindly referred to [16].

If the absolute position of the tricopter p =
[
x y z

]T
is given by three Cartesian coordinates of its center of mass
in the world frame and p∗ =

[
x∗ y∗ z∗

]T
is the desired

position of the UAV, then the position error is

e =
[
ex ey ez

]T
= p∗ − p. (21)

The position controller computes the desired linear velocity
v∗, in order to reach the desired position p∗ from the current
position p. The position controller in Fig. 6 consists of three
identical and independent DI-IT2-FPID sub-controllers for x,
y and z axes. Each sub-controller takes the corresponding
position error e and its time derivative ė, as the input, and
returns the corresponding desired velocity v∗, as the output.

x-position
controller

y-position
controller

z-position
controller

d
dt

d
dt

d
dt

Position controller

Velocity
controller

Tricopter
dynamics

p∗ + e

ex

ėx

ey

ėy

ez

ėz

v∗x

v∗y

v∗z

v∗

u

p

−

o, v, ωB

Fig. 6. Block diagram of the position controller for the tricopter UAV.

B. Trajectory Generation

In the simulation scenario, a square-wave 3D trajectory is
chosen to test the stability and robustness of each controller
with different PSs. The navigation of the UAV combines long
and short straight lines path as well as hovering:

x∗k =
⌊
k
2

⌋
y∗k = 10

⌊
(k−1) mod 4

2

⌋
z∗k = 1,

(22)

where k ∈ N+ and b?c is the largest integer not greater than
value ?. First, UAV hovers at [0, 0, 1]m. After that, UAV flies
to the next way-point at [1, 0, 1]m and hovers for 10s before
flying to the next way-point. This type of trajectory is often
used in autonomous UAV mapping and exploration scenarios.

C. Simulation Results

Our main goal is to give a novel analysis for DI-IT2-FLC
rather than compare its performance with other controllers.
For the trajectory tracking problem, the following three PSs
are investigated (for simplicity we have assumed α1 = α2):

1) PS-1: α1 = α2 = 0.3;
2) PS-2: α1 = α2 = 0.5;
3) PS-3: α1 = α2 = 0.9.

The 3D trajectory tracking of DI-IT2-FPID controllers with
PS-1, PS-2 and PS-3 is shown in Fig. 7. The position responses
of the designed DI-IT2-FPID controllers with PS-1, PS-2 and
PS-3 are shown in Fig. 8. As can be seen from Fig. 8, the
controller with PS-1 has an oscillatory behaviour, while the
controller with PS-3 is relatively slow in converging to the
desired value. On the other hand, the controller with PS-2
combines the characteristics of both controllers with PS-1 and
PS-3; it is fast with smaller overshoot and no oscillations.
The response properties are also given in Table II. As can be
seen from Table II, DI-IT2-FPID with PS-1 has shorter rising
time but longer settling time and overshoot, while DI-IT2-
FPID with PS-3 has smaller overshoot but longer rise time.
What is more, DI-IT2-FPID with PS-2 results in the lowest
mean squared error value and settling time.
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Fig. 7. 3D trajectory tracking results for DI-IT2-FPID position controllers
with different values of α1 and α2.
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Fig. 8. Trajectory tracking for x, y and z axes of DI-IT2-FPID position controllers with different values of α1 and α2. The video is available at
https://youtu.be/Eo2Cuk3Bo5Y.

On the other hand, from the analysis in Fig. 4 and Fig. 5, we
expect that PSs with small values of α1 and α2, e.g., PS-1, will
result in a more aggressive behaviour. Moreover, we expect
that PSs with high values of α1 and α2, e.g., PS-3, will result
in a smoother behaviour. Furthermore, we expect that PSs with
intermediate values of α1 and α2, e.g., PS-2, will result in
a moderate behaviour which is the case here. Therefore, it
can be concluded that the simulation results match with the
theoretical expectations.

V. CONCLUSION AND FUTURE WORK

In this paper, we have designed, deployed and analysed DI-
IT2-FLC. We have presented the IT2-FLC design approach
in which only two parameters have to be tuned. It has been
shown that, by only tuning the FOU parameters, it is possible
to design DI-IT2-FLC controller in a straightforward manner.
Then, to validate these theoretical design and to show its
simplicity, three DI-IT2-FPID controllers have been designed
for the position control of the Y6 coaxial tricopter UAV. It is
to be noted that two control loops exist in the UAV control:
outer loop and inner loop. In each of them – assuming we
design an FLC – we have a large number of parameters to
be tuned. Therefore, the developed DI-IT2-FPID controller is
suitable for UAV control, since it allows to reduce the number
of parameters to be tuned. For the simulations, the DI-IT2-
FPID controller is implemented in ROS and tested in Gazebo
simulator. Finally, it has been shown that the theoretical
analysis for DI-IT2-FLCs matches with the simulation results.

In the future, we will conduct real-time experiments with
Y6 coaxial tricopter UAV using DI-IT2-FPID. Moreover, we
will compare the performances of DI-IT2-FPID with other
controllers in a variety of input noise and wind conditions.

TABLE II
PROPERTIES OF DIFFERENT CONTROLLERS.

DI-IT2-FPID controller PS-1 PS-2 PS-3
Mean squared error, [m] 0.777 0.748 0.821
Overshoot, [m] 0.405 0.069 0.031
Rise time, [s] 0.80 1.18 3.32
Settling time (5%), [s] - 1.71 2.53
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