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Abstract—As non-singleton fuzzy logic controllers (NSFLCs)
are capable of capturing input uncertainties, they have been
effectively used to control and navigate unmanned aerial vehicles
(UAVs) recently. To further enhance the capability to handle the
input uncertainty for the UAV applications, a novel NSFLC with
the recently introduced similarity-based inference engine, i.e.,
Sim-NSFLC, is developed. In this paper, a comparative study
in a 3D trajectory tracking application has been carried out
using the aforementioned Sim-NSFLC and the NSFLCs with
the standard as well as centroid composition-based inference
engines, i.e., Sta-NSFLC and Cen-NSFLC. All the NSFLCs are
developed within the robot operating system (ROS) using the
C++ programming language. Extensive ROS Gazebo simulation-
based experiments show that the Sim-NSFLCs can achieve better
control performance for the UAVs in comparison with the Sta-
NSFLCs and Cen-NSFLCs under different input noise levels.

I. INTRODUCTION

Nowadays, unmanned aerial vehicles (UAVs) are widely
used for various civilian applications [1], [2]. In most of these
applications, classical control approaches, e.g. proportional-
integral-derivative control [3] and sliding mode control [4],
have been employed for UAVs to conduct autonomous flights.
However, these well-known controllers require a precise dy-
namic model of the UAV and work under the assumption that
significant internal as well as external uncertainties do not
substantially affect the UAV systems. Achieving an accurate
mathematical model for such complex aerial vehicles is often
time-consuming [5]. In addition, the frequently-used sensors
onboard the UAVs, e.g., camera, often lack precise modeling.
Their measurements consist of numbers of uncertain, incom-
plete and possibly inaccurate information [6].

In the literature, fuzzy logic controllers (FLCs) are exten-
sively used for the control and navigation of the UAVs. They
are able to deliver adequate control and handle uncertainties
without the requirement of an accurate mathematical UAV
model. Among the different types of FLCs, singleton FLCs
(SFLCs) are the most common FLCs used for the UAVs [7].
However, SFLCs are not capable of capturing input uncertain-
ties effectively. Therefore, non-singleton FLCs (NSFLCs) are
preferred as they can deal with the uncertainties by modeling

the inputs as input fuzzy sets (FSs) [8]. In our previous paper
[9], we investigated that applying two NSFLCs with standard
and a novel centroid-based inference engines, i.e., Sta-NSFLC
[8] and Cen-NSFLC [10], to control and stabilize the UAVs.
The UAV flight results show that the Cen-NSFLCs can achieve
better control performance than the Sta-NSFLCs. Furthermore,
both the Sta-NSFLCs and Cen-NSFLCs outperform SFLCs
under different levels of noise conditions. Despite that the
NSFLCs are superior to the SFLCs, the NSFLCs applied for
the UAV applications are still rare in comparison to the SFLCs.

In this work, a novel NSFLC with the similarity-based
inference engine, i.e., Sim-NSFLC, is developed based on our
recently introduced similarity-based non-singleton fuzzy logic
system (NSFLS) inference engine [11] to navigate and guide a
quadrotor UAV in a 3D trajectory tracking application. In this
new approach, the firing strength of each rule is calculated by
the similarity between the input and antecedent FSs instead of
being calculated by the standard or centroid-based approach.
The similarity-based inference engine is able to make the
NSFLCs more sensitive to the changes of the input uncertainty.
In [11], the Sim-NSFLS showed promising results in the
well-known problem of Mackey-Glass time series predictions,
i.e., the Sim-NSFLS outperformed the Sta-NSFLS and Cen-
NSFLS under various noise conditions.

While this work is simulation-based, all the NSFLCs used
in this work are developed within the robot operating system
(ROS) [12] using C++ programming language to easily enable
future, real-world experiments. The control performances of
these NSFLCs are evaluated in the ROS Gazebo [13] environ-
ment, which provides a seamless connection for the developed
algorithms between the simulation and real-world applications.

To the best of our knowledge, this is the first time in the
literature that the similarity-based NSFLS inference is applied
for control, i.e., as a Sim-NSFLC. The rest of this paper is
structured as follows: Section II introduces quadrotor UAV
dynamic model and control structure. Section III presents a
brief background for the NSFLCs. Section IV evaluates control
performances with all three NSFLCs under different input
noise levels. Section V presents conclusions and future work.



II. QUADROTOR UAV DYNAMICS AND CONTROL
STRUCTURE

A. Quadrotor UAV Dynamics

In this work, the Parrot ARDrone 2 quadrotor UAV [14],
as its Gazebo model shown in Fig. 1, is used to evaluate
the NSFLCs. Let world inertial reference frame be FI , i.e.,
{~xI , ~yI , ~zI}, and body frame be FB , i.e., {~xB , ~yB , ~zB}. Figure
1 illustrates the UAV configuration and reference frames.

To achieve the translations and rotations of the UAV, the
thrust of four rotors fi, i = 1, . . . , 4, are adjusted with
various combinations. The thrust from each rotor is changed
by controlling the angular speed wi, i = 1, . . . , 4 of the motor.
The control input vector c of the UAV is represented as:
c =

[
T τφ τθ τψ

]T
, where T is the total thrust along

the ~zB axis; τφ, τθ and τψ are the moments acting on the ~xB ,
~yB and ~zB axes. Then, the relationship between the control
input c and angular speed ωi, i = 1, . . . , 4, is as follows [15]:
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where b is the coefficient of propeller thrust, d is the coefficient
of propeller drag and l is the UAV arm length.

Let the absolute position of the UAV be the three Cartesian
coordinates of its mass center in the world frame FI , i.e,
p =

[
x y z

]T
, and its attitude be the three Euler angles,

i.e, o =
[
φ θ ψ

]T
, called roll, pitch and yaw, respectively.

The time derivative of the absolute position is denoted as
v =

[
ẋ ẏ ż

]T
=
[
u v w

]T
, where v is the absolute

velocity of the UAV’s mass center in FI . Moreover, the time
derivative of the attitude is ω =

[
φ̇ θ̇ ψ̇

]T
, which is the

angular velocity in FI , and the angular velocity in FB is
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Fig. 1: Quadrotor UAV model with reference frames.

ωB =
[
p q r

]T
. The dynamical model of the UAV is:

ẋ = u u̇ = 1
m (cφcψsθ + sφsψ)T

ẏ = v v̇ = 1
m (cφsψsθ − cψsφ)T

ż = w ẇ = 1
mcφcθT − g

φ̇ = p+ sφtθq + cφtθr ṗ =
Iy−Iz
Ix

qr + 1
Ix
τφ

θ̇ = cφq − sφr q̇ = Iz−Ix
Iy

pr + 1
Iy
τθ

ψ̇ =
sφ
cθ
q +

cφ
cθ
r ṙ =

Ix−Iy
Iz

pq + 1
Iz
τψ,

(2)

where c∗, s∗ and t∗ denote cos ∗, sin ∗ and tan ∗, m is the mass
of the UAV, g is the gravity acceleration, i.e, g = 9.81m/s2,
and I = diag(Ix, Iy, Iz) is the inertia matrix. As can be
seen from the above dynamic equations, these equations are
coupled, non-linear and the system to be controlled is under-
actuated. Additionally, as discussed uncertainties in the real-
world control of the UAV are inevitable. Hence, a fuzzy logic
controller is utilized in this work instead of using a model-
based linear controller.

B. Control Structure

The high-level NSFLC-based closed-loop control structure
is illustrated in Fig. 2. It consists of two modules (shown
with dashed rectangles): the position controller and the UAV.
The position controller module includes three independent NS-
FLCs, which take the desired position pd =

[
xd yd zd

]T
and current measured position p =

[
x y z

]T
as the inputs,

and then compute the control command ud, i.e., the desired
roll φd, desired pitch θd angles and desired vertical velocity
vzd . Specifically, considering the x-axis NSFLC as an example,
the error ex, i.e., xd − x, the integral of the error

∫
ex and

the derivative of the error dex are calculated, and then the x-
axis NSFLC outputs the desired roll φd. The detail on how
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Fig. 2: The NSFLC-based closed-loop control structure for the
navigation of the quadrotor UAV.



the NSFLC converts these errors to the desired command is
introduced in Section III. The UAV module contains the low-
level velocity/attitude controllers, the UAV system as well as
the onboard sensors. The onboard sensors are used to measure
the current UAV position and thus the input to the FLC.

III. BACKGROUND OF NSFLCS

A. Structure of NSFLC

A NSFLC includes fuzzifier, inference engine, rule base
and defuzzifier [8]. Specifically, the NSFLC utilizes a non-
singleton fuzzifier to model input uncertainties. In other words,
the fuzzifier maps a crisp input to an input FS with a mem-
bership function (MF) around x′ for handling the uncertainties
from the actual input. In this work, a Gaussian distribution is
employed for the fuzzifier:

µX(xi) = exp

[
−(xi − x′i)2

2σ2
F

]
. (3)

where x′i is the input crisp value and the mean value of the FS.
σF is the spread of the FS. Larger values of the σF imply that
more noise is expected in relation to the input data. It is noted
that the crisp input can be a vector with multiple elements, as
the three inputs ex,

∫
ex and dex. And each element in this

vector is fuzzified with a Gaussian distribution.
In the literature, NSFLCs, which have been used for

controlling UAVs, can be generally divided into two types
based on different composition-based inference engines [9]:
(I) the NSFLC with standard composition-based inference
engine [8], i.e., Sta-NSFLC and (II) the NSFLC with centroid
composition-based inference engine [10], i.e., Cen-NSFLC. In
the Cen-NSFLC, the centroid of the FS intersection between
the input and antecedent FSs is used for calculating the
firing strength of each rule rather than the maximum of the
intersection utilized in Sta-NSFLCs. The main motivation in
this paper is to leverage an even more effective mechanism
to integrate the input uncertainty into the inference engine,
thereby making the NSFLCs more sensitive to the changes
of the input uncertainty model in comparison with the Sta-
NSFLC and Cen-NSFLC.

B. The standard NSFLC Inference Engine for UAV control

The general mapping between the inputs and outputs of
the NSFLC is described in Fig. 3. To keep the descrip-
tion consistent with Section II-B, we still consider the x-
axis NSFLC as an example. A triple-input, single-rule and
single-output discrete NSFLC is considered, and the Mamdani
implication is employed. Figure 3 illustrates the calculation
from inputs (Xe, Xde and X∫

e), antecedents (Ae, Ade and
A∫

e) and consequent (C) fuzzy sets to output (Y ) of a Sta-
NSFLC. Here, the crisp input is a vector which includes
three elements, i.e., x =

[
e de

∫
e
]T

, as discussed in the
Section II-B. The e, de and

∫
e are the members of the input

FSs Xe, Xde and X∫
e, respectively. y is the member of the

output FS (Y ). Moreover, µX∗(∗), µA∗(∗), µC(y) and µY (y)
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Fig. 3: Example of the calculation from inputs (X∗), an-
tecedents (A∗) and consequent (C) fuzzy sets to output (Y )
of a Sta-NSFLC.

be the membership functions (MFs) of X∗, A∗, C and Y ,
respectively. The defined rule is as follows:

IF e is Ae AND de is Ade AND
∫
e is A∫

e THEN y is C.

The input-output mapping of the Sta-NSFLC is:

µY (y) = min[µC(y), min[µe, µde, µ∫
e]], (4)

where, 
µe = max[µXe(e) ? µAe(e)]

µ∫
e = max[µX∫

e
(
∫
e) ? µA∫

e
(
∫
e)]

µde = max[µXde(de) ? µAde(de)],

µX∗(∗) ? µA∗(∗) is the intersection of X∗ and A∗.
The above equations show that the firing level of an an-

tecedent is the maximum of its intersection with the input FS.

C. The NSFLC with Centroid-based Inference Engine (Cen-
NSFLC)

To make the NSFLC more sensitive to the input uncertainty,
the Cen-NSFLCs have been presented to control and stabilize
the UAVs recently [9]. Taking the derivative of error de for
example (as the blue rectangle shown in the Fig. 3), two dif-
ferent input FSs, i.e. X1

de and X2
de, which are intersected with

the same antecedent Ade, are considered, as shown in Fig. 4.
Despite that the actual input FSs are different, the firing levels
calculated by the standard approach in the Sta-NSFLC are the
same in both cases, i.e., µ1

Xde
(demax) = µ2

Xde
(demax) = α.

While the centroid-based approach in the Cen-NSFLC has
higher sensitivity to the shape of the intersection between the
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Fig. 4: The difference between the Cen-NSFLC and Sta-
NSFLC. α, β and γ are the different firing levels.

input FS and antecedent FS, i.e., these two various inputs with
a different associated uncertainty distribution can generate two
different firing levels, i.e., β and γ.

Considering a discrete FS Xde with a membership function
µXde(dei), the centroid of Xde is defined as:

xcen(Xde) =

∑n
i=1 deiµXde(dei)∑n
i=1 µXde(dei)

, (5)

where n is the number of discretization levels (we set n=100
for our work) utilized in a discrete system.

The input-output mapping of the Cen-NSFLC is:

µY (y) = min[µC(y), min[µe, µde, µ∫
e]], (6)

where, 
µe = µXe∩Ae(xcen(Xe ∩Ae)),
µ∫

e = µX∫
e∩A∫

e
(xcen(X∫

e ∩A∫
e)),

µde = µXde∩Ade(xcen(Xde ∩Ade)).

xcen(X∗ ∩ A∗) is the centroid of the intersection of an input
X∗ and an antecedent A∗. The aforementioned formulations
show that the firing level of an antecedent is its membership
degree at the centroid of the intersection with the input FS.

Although the Cen-NSFLC outperformed the Sta-NSFLC
for the autonomous control and stabilization of the UAVs in
our previous work [9]. Based on [11], we hypothesize that
the performance of the NSFLCs can be further improved in
our UAV tests by replacing the composition-based inference
engine with the similarity-based inference engine.

D. The Similarity-based NSFLC (Sim-NSFLC)

We start by illustrating the rationale for the Sim-NSFLS
as originally outlined in [11]. Figure 5 shows intersections
of two different input FSs with one antecedent FS, although
these two different input FSs have two different associ-
ated uncertainty distributions. The standard and centroid-
based firing strengths of Ade for both X1

de and X2
de are the

same, i.e, µ1
Xde

(decen1) = µ2
Xde

(decen2) = µ1
Xde

(demax) =
µ2
Xde

(demax) = 1. Hence, a new NSFLS, which is more
sensitive to the input uncertainty, is desirable. In our previous
work [11], a novel NSFLS with the similarity-based inference
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Fig. 5: The difference for the Sim-NSFLC, Cen-NSFLC and
Sta-NSFLC. δ and λ are the different firing strengths of Ade
for X1

de and X2
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engine, i.e., Sim-NSFLS, was used for the well-known prob-
lem of Mackey-Glass time series predictions. The prediction
results showed that the Sim-NSFLS outperformed the Sta-
NSFLS and Cen-NSFLS under different noise conditions.

As shown in the Fig. 5, δ and λ are two different firing
levels for two different inputs based on the similarity-based
approach. In this work, the Sim-NSFLC is developed to control
and navigate the UAVs in a 3D trajectory tracking application.

Considering the input FS Xde and antecedent FS Ade with
membership functions µXde(de) and µAde(de), the similarity
between the Xde and Ade is defined based on the Jaccard
similarity [16]:

s(Xde, Ade) =

∫
de∈Xde min(µXde(de), µAde(de))∫
de∈Xde max(µXde(de), µAde(de))

, (7)

In discrete domain, the above equation can be rewritten as:

s(Xde, Ade) =

∑n
i=1 min(µXde(de), µAde(de))∑n
i=1 max(µXde(de), µAde(de))

, (8)

where n is also the number of discretization levels (we set
n=100 for our work).

The input-output mapping of the Sim-NSFLC is:

µY (y) = min[µC(y), min[µe, µde, µ∫
e]], (9)

where, 
µe = s(Xe, Ae)

µ∫
e = s(X∫

e, A
∫
e)

µde = s(Xde, Ade).

The above formulations show that the firing level is the
similarity between the antecedent and the input FS. The fol-
lowing section investigates the control performance of the Sim-
NSFLC and compare it with the composition-based NSFLCs,
i.e., Sta-NSFLC and Cen-NSFLC.

IV. SIMULATION STUDIES

A. 3D trajectory generation

The 3D trajectory is defined according to the minimize snap
property [17], which enables the real-time generation of an



optimal trajectory through a sequence of 3D positions, thereby
ensuring safe passage through specified environments as well
as maintaining the constraints on accelerations and velocities.
Similar to [18], some manoeuvrable flights were generated,
e.g., descending and climbing straight lines as well as curves,
the sharp turns between the straight lines and curves, to test
the control performance of each NSFLC controller.

B. Fuzzifier, membership function and rule base
Different Gaussian MFs (with different standard deviations)

are tested to evaluate the capture capability for the expected
input uncertainty or noise in each of the NSFLC controllers.
Each input variable, i.e., error, the integral of the error or the
derivative of the error, has three MFs, and the output variable
has five MFs. Table I shows the rule base of each NSFLC,
where each abbreviation Z, N, P, S, B represents zero, negative,
positive, small or big, respectively.

C. Intrinsic parameters of quadrotor UAV
These intrinsic parameters are determined based on the ones

of a real Parrot AR Drone 2 quadrotor UAV, i.e., b = 8.54×
10−6N ·s2, d = 1.6×10−2N ·m ·s2, Ix = Iy = 0.007kg ·m2,
Iz = 0.012kg ·m2, l = 0.18m and m = 0.68kg.

D. Noise generation and control performance evaluation
The Gaussian noise is defined by a noise generator [9],

which injects the noise to the sensors of each UAV. The

TABLE I: Rule Base for all NSFLCs

Integral
Error

Derivative
Error

Proportional Error
N Z P

N
N BP BP SP
Z BP SP Z
P SP Z SN

Z
N BP SP Z
Z SP Z SN
P Z SN BN

P
N SP Z SN
Z Z SN BN
P SN BN BN

noise level is parameterized by its standard deviation σN . In
addition, the control performance evaluation is conducted in
terms of the mean squared error (MSE) of the 3D position.

E. Simulation results

In this work, eleven levels of noise and five instances of
the NSFLCs with different input fuzzifications (i.e., different
standard deviations for input MFs) are provided to evaluate the
quadrotor UAV control performances using the aforementioned
three NSFLCs. Each combination of the noise and fuzzifer
for one NSFLC is evaluated for 30 times. Figure 6 shows the
example of three UAV flights with the same level of fuzzifier
(σF=1.0) under three different levels of noise (σN=0.0, 0.5
and 1.0). Table II shows the average MSE of the 3D position.
As shown in Table II, the Cen-NSFLCs outperform the Sta-
NSFLCs, and the control performances of the Sim-NSFLCs
are better than both the Cen-NSFLCs and Sta-NSFLCs. In
addition, the larger values of the σF for the fuzzifier can assist
the NSFLCS to achieve better performances. Figure 7 also
clearly shows the control performance differences among the
Sta-NSFLC, Cen-NSFLC and Sim-NSFLC.

A demonstration video related to our work can be found at:
https://youtu.be/NVfgz38RFuA.
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TABLE II: Average MSE of 3D Position (Unit: Meter)

NSFLC / Noise Level (σN ) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Sta-NSFLC (σF =0.2) 0.0202 0.0267 0.0643 0.1065 0.1514 0.2079 0.2686 0.4069 0.4674 0.4938 0.6469
Cen-NSFLC (σF =0.2) 0.0165 0.0251 0.0634 0.0969 0.1436 0.1910 0.2413 0.3781 0.3929 0.4657 0.5646
Sim-NSFLC (σF =0.2) 0.0136 0.0232 0.0587 0.0866 0.1398 0.1862 0.2373 0.3156 0.3707 0.4348 0.4758
Sta-NSFLC (σF =0.4) 0.0168 0.0258 0.0642 0.0921 0.1423 0.2026 0.2619 0.3738 0.4650 0.4917 0.6271
Cen-NSFLC (σF =0.4) 0.0132 0.0240 0.0603 0.0916 0.1381 0.1903 0.2408 0.3482 0.3822 0.4476 0.5190
Sim-NSFLC (σF =0.4) 0.0117 0.0229 0.0528 0.0860 0.1233 0.1729 0.2315 0.3132 0.3602 0.4006 0.4603
Sta-NSFLC (σF =0.6) 0.0121 0.0243 0.0626 0.0916 0.1412 0.1978 0.2617 0.3637 0.3843 0.4586 0.5589
Cen-NSFLC (σF =0.6) 0.0119 0.0220 0.0592 0.0901 0.1362 0.1874 0.2329 0.3309 0.3783 0.4472 0.5059
Sim-NSFLC (σF =0.6) 0.0112 0.0204 0.0502 0.0857 0.1225 0.1646 0.2241 0.2448 0.3572 0.3848 0.4478
Sta-NSFLC (σF =0.8) 0.0114 0.0237 0.0541 0.0914 0.1411 0.1615 0.2372 0.3234 0.3645 0.4581 0.4986
Cen-NSFLC (σF =0.8) 0.0118 0.0213 0.0509 0.0884 0.1348 0.1450 0.2326 0.2941 0.3302 0.3960 0.4694
Sim-NSFLC (σF =0.8) 0.0103 0.0200 0.0434 0.0785 0.1205 0.1403 0.2117 0.2372 0.3225 0.3521 0.4017
Sta-NSFLC (σF =1.0) 0.0109 0.0232 0.0472 0.0844 0.1366 0.1610 0.2361 0.3143 0.3332 0.3977 0.4160
Cen-NSFLC (σF =1.0) 0.0106 0.0211 0.0440 0.0805 0.1317 0.1405 0.2206 0.2610 0.2857 0.3543 0.3650
Sim-NSFLC (σF =1.0) 0.0093 0.0192 0.0426 0.0769 0.1187 0.1259 0.2077 0.2247 0.2584 0.3082 0.3192

V. CONCLUSION AND FUTURE WORK

In this work, a novel NSFLC with similarity-based in-
ference engine has been developed and deployed to control
simulated UAVs in the 3D trajectory tracking application. A
comprehensive comparison and evaluation has been carried out
with three different types of NSFLCs, i.e., Sta-NSFLC, Cen-
NSFLC and the novel NSFLC (Sim-NSFLC), under different
levels of input uncertainty, i.e., noise. The aim of this work
was not only to evaluate the control performances among these
three NSFLCs, but also to explore better NSFLCs for the real-
world UAV applications. All the NSFLCs are programmed
in the C++ language and evaluated in the ROS and Gazebo
environment. The extensive simulation tests show that the Sim-
NSFLC can obtain better control performances compared to
the Sta-NSFLC and Cen-NSFLC, especially at the higher input
noise levels. Moreover, the different input fuzzifications can
achieve the various capabilities for capturing input uncertain-
ties. In other words, the higher input fuzzification has more
capability to handle higher level input noise. These results
support the results in [11].

For future work, the experiments on real-world quadrotor
UAVs will be conducted and we will extend this approach
to different Type-2 FLCs to control the quadrotor UAVs, and
compare their performances under different input noise levels.
Finally, the novel NSFLC architecture provides improved
capacity to explore detailed input uncertainty models (captured
in the input fuzzy sets), thus a key aspect of our future work is
to develop improved techniques to appropriately capture real-
world input noise/uncertainty in the input MFs of the FLCs.
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