
Online Deep Learning for Improved Trajectory Tracking of
Unmanned Aerial Vehicles Using Expert Knowledge

Andriy Sarabakha1 and Erdal Kayacan2

Abstract— This work presents an online learning-based con-
trol method for improved trajectory tracking of unmanned
aerial vehicles using both deep learning and expert knowledge.
The proposed method does not require the exact model of the
system to be controlled, and it is robust against variations
in system dynamics as well as operational uncertainties. The
learning is divided into two phases: offline (pre-)training and
online (post-)training. In the former, a conventional controller
performs a set of trajectories and, based on the input-output
dataset, the deep neural network (DNN)-based controller is
trained. In the latter, the trained DNN, which mimics the
conventional controller, controls the system. Unlike the existing
papers in the literature, the network is still being trained
for different sets of trajectories which are not used in the
training phase of DNN. Thanks to the rule-base, which contains
the expert knowledge, the proposed framework learns the
system dynamics and operational uncertainties in real-time. The
experimental results show that the proposed online learning-
based approach gives better trajectory tracking performance
when compared to the only offline trained network.

I. INTRODUCTION

Research activities to develop increased autonomy in un-
manned aerial vehicles (UAVs) have taken a centre stage
in the recent years due to their usefulness in providing cost-
effective solutions to dangerous, dirty and dull tasks, such as
aerial grasping [1], emergency evacuation [2] and building
inspection [3]. In these applications, it is crucial for UAVs
to be able to fly autonomously in uncertain environments
with variations in operating conditions [4]. Therefore, in such
conditions, adaptability is a must rather than a choice.

Given the ability of artificial neural networks (ANNs) to
generalise knowledge from training samples, an ANN-based
controller can be used to control nonlinear dynamic systems
[5]. On the other hand, deep neural networks (DNNs) can
approximate non-linear functions with exponentially lower
number of training parameters and higher sample complexity
when compared to ANNs [6]. Therefore, DNNs propose a
novel approach to enhance the control strategies [7].

In the literature, ANNs have successfully been integrated
with control system design to improve tracking performance
in uncertain environments [8]. In [9], the unknown part
of the dynamical model of a quadcopter is modelled by
DNN. In [10], DNN is used for direct inverse control of
the quadrotor in simulation. In [11] and [12], DNNs are
used to learn the dynamics of helicopter and multicopter,

1Andriy Sarabakha is with School of Mechanical and Aerospace Engi-
neering, Nanyang Technological University, 50 Nanyang Avenue, Singapore,
639798. andriy001@e.ntu.edu.sg

2Erdal Kayacan is with Department of Engineering, Aarhus University,
Aabogade 34, Aarhus N, 8200, Denmark. erdal@eng.au.dk

Errors

Trajectory

Cameras

UAV
Control
inputs

Position 
Estimation

Infrared
images

DNN

Past
experience

Trajectory
generation

Errors,

𝜕

𝜕𝑡
Errors

Desired
position

Actual position

Weights

Weight
updates

On-line learning

Off-line learning

Expert
knowledge

Inference 
engine

Update
rules

Input
layer Output

layer

Hidden layers

𝐱 𝐖1
𝐖2 𝐖3 𝑦

𝑥1

𝑥2

Fig. 1. Illustration of the proposed online learning-based control scheme.
During the offline learning phase, a conventional controller performs a set
of trajectories and the input-output dataset is used for the offline training
of DNN. During the online learning phase, DNN controls the UAV and, by
using the expert knowledge, improves further the performance in real-time.

respectively. In [13], DNN pre-cascaded module is used to
improve the performance of UAV in tracking arbitrary hand-
drawn trajectory. However, in all these works, DNNs are
trained offline and, then, used online without further learning.
In other words, while the dynamics are learnt in the training
phase, the controller is not updated in the testing phase –
DNN simply mimics the conventional controller – and the
operational uncertainties are no longer learnt.

Unlike the traditional use of DNNs in literature, in this
work, we propose an online DNN-based approach for im-
proving trajectory tracking performance of UAVs. After an
offline pre-training phase with past flight data, a DNN-based
controller is used in real-time to control the UAV. Without
any prior knowledge of the system, besides the training
data, the proposed approach shows its capability to reduce
the trajectory tracking error online by compensating for
internal uncertainties and external disturbances. Moreover, it
is shown that the DNN module is computationally suitable
for real-time operations and adequate for arbitrary trajectory,
making it applicable to the real-world tasks. Furthermore,
the proposed approach employs the expert knowledge for
the online training. The overall control architecture and its
training process are depicted in Fig. 1.

This work is organised as follows. The problem is for-
mulated in Section II. Section III introduces the proposed
approach. Then, Section IV presents the experimental setup.
Section V provides real-time experiments with quadcopter
UAV, to validate the proposed method. Finally, Section VI
summarises this work with conclusions and future work.



II. PROBLEM FORMULATION

In this work, we consider a problem of designing a
learning feedback control algorithm for a dynamical system,
such as UAV. Our objective is to learn a control strategy of
the system to achieve a high-accuracy tracking. To describe
the problem, we introduce the dynamical model of UAV first.

A. Dynamical Model of Unmanned Aerial Vehicle

The world-fixed reference frame is FW = {~xW , ~yW ,~zW }
and the body frame is FB = {~xB , ~yB ,~zB}. The absolute
position of UAV p =

[
x y z

]T
is given by three Cartesian

coordinates at its center of gravity in FW , and its attitude
o =

[
φ θ ψ

]T
is given by three Euler angles. The

rotation matrix from FB to FW is given by the combination
of three single rotation matrices around φ, θ and ψ. The
time derivative of the position gives the linear velocity
v =

[
ẋ ẏ ż

]T
=
[
vx vy vz

]T
of UAV expressed

in FW . Equivalently, the time derivative of the attitude
ω =

[
φ̇ θ̇ ψ̇

]T
gives the angular velocity in FW and

ωB =
[
p q r

]T
is the angular velocity in FB .

The vector of control inputs u is chosen as:

u =
[
T τφ τθ τψ

]T
, (1)

where T is the total thrust along ~zB , whereas τφ, τθ and τψ
are moments around ~xB , ~yB and ~zB , respectively. Finally,
the dynamical model of UAV is given as in [14]:

ẋ = vx u̇ = 1
m (cφcψsθ + sφsψ)T

ẏ = vy v̇ = 1
m (cφsψsθ − cψsφ)T

ż = vz ẇ = −g + 1
mcφcθT

φ̇ = p+ sφtθq + cφtθr ṗ =
Iy−Iz
Ix

qr + 1
Ix
τφ

θ̇ = cφq − sφr q̇ = Iz−Ix
Iy

pr + 1
Iy
τθ

ψ̇ =
sφ
cθ
q +

cφ
cθ
r ṙ =

Ix−Iy
Iz

pq + 1
Iz
τψ,

(2)
where m is the mass of UAV, g is the gravity acceleration
constant, I = diag(Ix, Iy, Iz) is the inertia matrix, c?, s?
and t? denote cos (?), sin (?) and tan (?), respectively.

Remark 1: The dynamical system in (2) is nonlinear, cou-
pled and underactuated. Therefore, an advanced controller is
required.

The system in (2) can be written in a general form as:{
ẋ = f(x) + g(x)u + d

y = h(x),
(3)

where x =
[
x y z φ θ ψ u v w p q r

]T
,

d is the disturbance term, h(x) =
[
x y z φ θ ψ

]T
and u is defined in (1).

B. Problem Description
If a precise model of the system exists, then the inver-

sion of the system can be computed. Let h ◦ f denote
the composition of functions h and f ; while f i denote
the i-th composition of function f , i.e., f0(x) = x and
f i(x) = f i−1 ◦ f(x) ∀i ∈ N+ [15]. Let n define
the dimension of the system’s input, i.e., u ∈ Rn, and
let r define the vector of relative degrees of the system,
s.t. arg min

ri

∂
∂ui

(
h ◦ fri−1 ◦ (f(x) + g(x)u)

)
6= 0 ∀i ∈

[1, n]. Then, the input and the output of the system are related
by

yk+ri = h ◦ fri−1 ◦ (f(xk) + g(xk)uk) . (4)

If y is affine in u, then (4) becomes

yk+ri = F (xk) +G(xk)uk, (5)

where Fi(xk) = h ◦ fri(xk) and Gi(xk) =
∂

∂uk,i

(
h ◦ fri−1 ◦ (f(xk) + g(xk)uk)

)
are the decoupling

matrices. Finally, the control law at time k to track the
desired output of the system y∗ can be written as in [16]:

uk,i = [G(xk)]
−1 (

y∗k+ri − F (xk)
)
. (6)

However, in a real system, the system’s parameters might
be unknown and difficult to estimate, e.g., moments of
inertia. What is more, these parameters might change during
the operation of the system, e.g., mass. Moreover, it is not
always possible to predict the external disturbance term.
Therefore, an adaptive controller which can learn online is
required. Our objective is to learn the control of the system
by only looking at the performance of the system, i.e., in our
case, the tracking error:

ek = y∗k − yk, (7)

and its time derivative:

ėk = ẏ∗k − ẏk. (8)

Thus, yk and ẏk is the only required information about the
system.

III. METHODOLOGY
By their nature, DNNs are distinguished from more com-

mon single-hidden-layer ANNs by their depth. The neurons
are organised in input, multiple-hidden and output layers. In
DNN, like in classical ANNs, the weights are modified using
a learning process governed by the training rules.

f(x) =
[
u v w p+ sφtθq + cφtθr cφq − sφr sφ

cθ
q +

cφ
cθ
r 0 0 g

Iy−Iz
Ix

qr Iz−Ix
Iy

pr
Ix−Iy
Iz

pq
]T
,

g(x) =


0 0 0 0 0 0 − 1

m (cφcψsθ + sφsψ) − 1
m (cφsψsθ − cψsφ) − 1

mcφcθ 0 0 0
0 0 0 0 0 0 0 0 0 1

Ix
0 0

0 0 0 0 0 0 0 0 0 0 1
Iy

0

0 0 0 0 0 0 0 0 0 0 0 1
Iz


T

,



A. Offline Pre-Training

During the offline pre-training phase, a supervised learning
approach is used, in which a feed-forward DNN learns
to control the system from a conventional controller –
proportional-integral-derivative (PID) controller, in our case.
In this control scheme, shown in Fig. 2a, PID controller
controls the system alone. Hence, it is utilized as an ordinary
feedback controller to ensure the global asymptotic stability
of the system and provide labelled training samples for
DNN. The training of DNN requires the availability of a
large number of labelled training samples. Each labelled
training sample consists of an input and expected output pair
< {ek, ėk}, {uk} >. The training of DNN involves back-
propagation to minimize the loss over all training examples.
After the training, DNN can approximate the mapping from
the training inputs to the outputs. The pseudo-code of offline
pre-training is provided in Algorithm 1.

B. Online Training

During the online training phase, DNN controls the sys-
tem, and, at the same time, learns how to improve the
control performances. Since DNN training requires super-
vised learning, another process has to provide a feedback
about its performances. In our case, fuzzy logic system
(FLS) is used to provide this information. By definition, FLS
incorporates the expert knowledge in form of rules and uses
this knowledge to provide some useful information [17]. The
control structure for online training is illustrated in Fig. 2b.

In our approach, FLS observes the behaviour of the system
controlled by DNN, and, depending on the situation, corrects
the action of DNN. The possible evolutions of the error are
depicted in Fig. 3. If the error is positive, i.e, ei > 0, and its
time derivative is also positive, i.e., ėi > 0, then the system
diverges (top red curve in Fig. 3). In this case, FLS will
force DNN to decrease the control signal ui significantly to
stabilize the system, i.e., ∆ui � 0. In another possible case,
if the error is negative, i.e., ei < 0, and its time derivative is
zero, i.e., ėi = 0, then the error is steady (bottom blue line in
Fig. 3). In this case, DNN falls down in a local minimum and
FLS will give a small positive perturbation, i.e., ∆ui > 0.
Finally, if the error is zero, i.e., ei = 0, and its time derivative
is also zero, i.e., ėi = 0, then, this is the optimal case (green
line in Fig. 3) and no action has to be taken, i.e., ∆ui = 0.

These empirical rules can be formally described by a
Mamdani FLS with triangular membership functions to
represent the fuzzy sets. The rules for each possible case

List of Abbreviations 1

PID

DNN

System
y∗

+

e u

û

y

−

DNN

FLS

System
y∗

+

e u

∆u

y

−

(a) Block diagram of the offline pre-
training of DNN by PID.

List of Abbreviations 1

PID

DNN

System
y∗

+

e u

û

y

−

DNN

FLS

System
y∗

+

e u

∆u

y

−

(b) Block diagram of the online post-
training of DNN by FLS.

Fig. 2. Block diagrams of two control paradigms: offline pre-training and
online post-training.

Algorithm 1: Offline pre-training of DNN.
Input: -
Output: Pre-trained DNN0

begin
while k < MaxSamples do

Get yk, y∗k, ẏk, ẏ∗k and uk
ek ← y∗k − yk by using (7)
ėk ← ẏ∗k − ẏk by using (8)
Collect < {ek, ėk}, {uk} >

end
DNN0 ← ConstructNetworkLayers()
w← InitializeWeights()
Train DNN0 on < {e, ė}, {u} >

end

are summarized by the rule-base in Table I. The inputs to
the FLC are selected to be the tracking error and its time
derivative, i.e., ei and ėi; while the output is the correction
signal, i.e., ∆ui. The input is represented by three fuzzy sets:
negative, zero and positive; while the output can belong to
five fuzzy sets: big decrease, small decrease, no changes,
small increase and big increase.

However, FLS requires operations among fuzzy sets which
are time-consuming. Therefore, by using a similar approach
to the one described in [18], a fuzzy mapping which rep-
resents the FLS in Table I can be generated for a general
multidimensional case:

∆uk = −α
(

1

2
ek + ėk −

1

2
abs(ek)� ėk

)
, (9)

where � denotes Hadamard product and α is the adaptation
rate. The fuzzy mapping reduces significantly the computa-
tion time which makes this approach suitable for real-time
systems [19]. The pseudo-code of online training is provided
in Algorithm 2.

Fig. 3. Possible evolution of the tracking error in a dynamical system.
The system can diverge (red curves), converge (cyan curves), it can have a
steady-state error (blue lines), or the error can be zero (green line).



TABLE I
RULE-BASE FOR THE UPDATES OF ui .

ei
ėi

Negative Zero Positive
Negative Big decrease Small decrease No changes
Zero Big decrease No changes Big increase
Positive No changes Small increase Big increase

IV. EXPERIMENTAL SETUP

The experimental platform used in this work is Parrot
Bebop 2 quadcopter UAV. This UAV is controlled via a Wi-Fi
connection and the robot operating system (ROS) is used to
communicate with UAV. The motion capture system provides
the UAV’s real-time position at 240Hz. This position is fed
into the ground station computer (CPU: 2.6GHz, 64bit,
quad-core; GPU: 4GB; RAM: 16GB DDR4) where the
algorithms are executed. Once the control signal is computed,
it is sent to the UAV at 100Hz rate.

For the attitude/velocity tracking, the onboard nonlinear
geometric controller on SE(3) is used [20]. The attitude
controller is responsible for mapping the high-level control
inputs, i.e.,

[
θ∗k φ∗k w∗k

]
, to the low-level control com-

mands, i.e., uk in (1).

A. Deep Neural Network Structure

Three feed-forward DNNs with hyperbolic tangent (tanh)
activation functions are used to learn the control mapping for
each controlled axis: x, y and z. The inputs to DNN for the
x-axis are the errors and their time derivatives on the x-axis,
{ex,k, ex,k−1, ex,k−2, ėx,k, ėx,k−1, ėx,k−2}, and the output is
the desired pitch angle, {θ∗k}. Similarly, the inputs to DNN
for the y-axis are the errors and their time derivatives on
the y-axis, {ey,k, ey,k−1, ey,k−2, ėy,k, ėy,k−1, ėy,k−2}, and
the output is the desired roll angle, {φ∗k}. Finally, the inputs
to DNN for the z-axis are the errors and their time derivatives
on the z-axis, {ez,k, ez,k−1, ez,k−2, ėz,k, ėz,k−1, ėz,k−2}, and
the output is the desired vertical velocity, {w∗k}.

Remark 2: Both DNN controllers with and without online
learning consist of three parallel sub-networks for x, y and
z axes.

In our case, after some heuristic analysis and experimental
trials, the architecture of each network is chosen to consist
of 6 input neurons (nI = 6), 6 scaling neurons, 2 fully con-
nected hidden layers (nL = 2) with 6 neurons in each layer
(nH = 6), 1 unscaling neuron and 1 output neuron (nO = 1).
From the asymptotic analysis, the runtime complexity for the
forward-propagation is O(nL ·n3H +nL ·nH) ≡ O(nL ·n3H).
While the runtime complexity for the back-propagation is
O(nQN ·nL·n4H+nL·n3H) ≡ O(nQN ·nL·n4H), where nQN is
the number of iterations in the quasi-Newton method. More-
over, the runtime complexity for the fuzzy mapping in (9)
is constant w.r.t. the architecture of the network, i.e., O(1).
The dominant operation in DNN0 is the forward-propagation;
therefore, the runtime complexity of DNN0 is polynomial.
However, DNN with online learning involves both forward-
propagation and back-propagation; therefore, the runtime

Algorithm 2: Online post-training of DNN.
Input: Pre-trained DNN0

Output: Trained DNN
Result: Learns and controls the system online
begin

DNN ← DNN0

repeat
Get yk, y∗k, ẏk and ẏ∗k
ek ← y∗k − yk by using (7)
ėk ← ẏ∗k − ẏk by using (8)
∆uk ← FLS(ek, ėk) by using (9)
Calculate uk by forward-propagation
Update by back-propagation
< {ek, ėk}, {uk + ∆uk} >

until landing
end

complexity of DNN is also polynomial but asymptotic to
O(nQN ·nL ·n4H). Therefore, the proposed architecture was
chosen as a compromise between the learning capability of
the neural network and the update time through the back-
propagation.

The error type is an important term in the loss index, and,
in our case, it is chosen as the normalized squared error. The
initialization algorithm is used to bring the neural network
to a stable region of the loss function, and, in our case, it is
selected as the random search. The training algorithm is the
core part of the training, and, in our case, the quasi-Newton
method is the most suitable choice for both offline and online
training.

B. Data Collection

To prepare the training samples of the flight data, the
system was controlled by a conventional controller alone,
while the position errors and their time derivatives were
collected as training inputs, and the control signal was saved
as the labelled output. By using PID controller, 100′000
instances have been collected in the training dataset for
each axis. This dataset is large enough for our application,
however, the proposed method does not have any limitations
on the dataset size. The training data include slow circular
and eight-shaped trajectories on xy-, xz- and yz-planes with
the reference speed of 1m/s.

V. EXPERIMENTAL RESULTS

In order to validate the capabilities of the proposed
controller in Section III, the trajectory following problem
of a quadcopter UAV is considered. The proposed control
architecture and its training process are depicted in Fig. 1.
Three different types of trajectories have been tested: slow
circular, fast circular and square-shaped. In order to show
the efficiency and efficacy of the DNN-based controller, it
is compared with a well-tuned PID controller (used during
the offline pre-training) and DNN controller without online
training, DNN0.



The first study case is the tracking of the slow circular
trajectory with radius 1m at 1m/s which has been used
during the pre-training phase. Fig. 4a shows the results of the
3D trajectory tracking for the first case. The projections on
x, y and z axes of this portion of the trajectory are shown on
Fig. 4b. The evolution of the Euclidean error for the tested
controllers is illustrated in Fig. 4c. The second study case is
the tracking of the fast circular trajectory with radius 1m at
2m/s which has not been used during the pre-training phase.
Fig. 4d shows the results of the 3D trajectory tracking of

the second case. The projections on x, y and z axes of this
portion of the trajectory are shown on Fig. 4e. The evolution
of the Euclidean error for the tested controllers is illustrated
in Fig. 4f. The third study case is the tracking of the square-
shaped trajectory with side length 2m at 1m/s which also has
not been used during the pre-training phase. Fig. 4g shows
the results of the 3D trajectory tracking of the third case. The
projections on x, y and z axes of this portion of the trajectory
are shown on Fig. 4h. The evolution of the Euclidean error
for the tested controllers is illustrated in Fig. 4i.

(a) 3D view for the tracking of the slow circular
trajectory.

(b) Projection of the slow circular trajectory
tracking on x, y and z axes.

(c) Euclidean error for the slow circular trajectory
tracking.

(d) 3D view for the tracking of the fast circular trajec-
tory.

(e) Projection of the fast circular trajectory
tracking on x, y and z axes.

(f) Euclidean error for the fact circular trajectory
tracking.

(g) 3D view for the tracking of the square-shaped
trajectory.

(h) Projection of the square-shaped trajectory
tracking on x, y and z axes.

(i) Euclidean error for the square-shaped trajec-
tory tracking.

Fig. 4. Experimental results for different controllers (PID, DNN0 and DNN) on three trajectories (slow circular, fast circular and square-shaped). The
slow circular trajectory has been used for the offline pre-training of DNN0, while fast circular and square-shaped trajectories have not been used during the
pre-training. It is possible to observe that DNN controller with online training is able to learn the system dynamics and improve the tracking performances
on all tested trajectories.



A. Discussion

A sample of experimental results for three controllers
(PID, DNN0 and DNN) on three trajectories (slow circular,
fast circular and square-shaped) are illustrated on Figs. 4.
It is possible to observe that DNN controller with online
training is able to learn the system dynamics and decrease
the tracking error over time on all tested trajectories. As visu-
alized from Figs. 4b, 4e and 4h, DNN has faster responses,
since it is able to estimate the desired control signal in (6)
and predict the evolution of the system dynamics. It has to
be emphasised that online DNN evolves from pre-trained
DNN0 during the learning process. Moreover, as expected,
DNN0 without online learning has poor performances on the
trajectories which have not been used for its training.

For a statistical analysis of control performances, the
experiments are repeated five times for each trajectory-
controller combination under the same conditions. Fig. 5
presents a box-plot to compare the tracking performances
of three different controllers on three tested trajectories.
It is possible to observe that on average DNN controller
with online learning outperforms other controllers on the
tested trajectories. In addition, the maximum absolute error
is also lower for the online DNN-based controller, even for
previously unseen trajectory. Finally, the variance of the error
is similar for PID and DNN with online learning controllers.

As can be seen from Table II, the DNN-based controller
with online learning outperforms both PID and DNN0 for
all tested trajectory in terms of mean absolute error (MAE).
Averaged results from numerous experiments depict that
the overall improvement of 60%, 61% and 46% in MSE
is achieved as compared to a well-tuned PID controller
for slow circular, fast circular and square-based trajectories,
respectively. While this ratio goes up to 62%, 70% and
64% when compared with pre-trained DNN0 for the same
trajectories.

Fig. 5. Box-plot of the tracking performances of different controllers on
three trajectories. For each trajectory, the experiments are repeated five times
under the same conditions. It is possible to observe that in average the DNN
controller with online learning outperforms other controllers on the tested
trajectories.

TABLE II
COMPARISON OF DIFFERENT CONTROLLERS IN TERMS OF MAE [m].

Trajectory PID DNN0 DNN
Slow circle 0.241 0.254 0.097
Fast circle 0.632 0.833 0.250
Square-shaped 0.284 0.431 0.154

Though the online DNN-based controllers can learn
promptly how to control the system, the computing time
is still the main drawback of this controller with online
back-propagation. The computing time is polynomially pro-
portional to the number of hidden layers and the number
of neurons in each layer. Therefore, deeper is the network,
more complex functions it can learn but more computational
power it requires. The average experimental computation
time for DNN with online back-propagation is around 5.4ms,
while for PID and DNN0 without online learning this time
is only 8µs and 16µs, respectively. However, 5.4ms is still
an acceptable time for real-time applications, which allows
the controller to run at almost 200Hz.

VI. CONCLUSIONS

In this work, we have presented a novel approach for a
high-level control of UAV that improves online the trajectory
tracking performances by using deep learning and expert
knowledge. The learning is subdivided into two phases:
offline pre-training and online training. During the offline
learning phase, a conventional controller performs a set of
trajectories and the batch of training samples is collected.
Then, DNN-based controller, DNN0, is pre-trained on the
collected data samples. However, DNN0 cannot adapt to
the new flying conditions unseen during the pre-training;
therefore, the online training is required. During the online
learning phase, DNN controls the system and adapts the
control input to improve the tracking performance. The
expert knowledge encoded into the rule-base, thanks to the
fuzzy mapping, provides the adaptation information to DNN
allowing the real-time learning. Once DNNs are trained
during the flight on UAV, the experimental results show that
the proposed approach improves the performance by around
50%. We believe that the results of this study will open the
doors to a wider use of DNN-based controllers with online
training in real-world control applications as the proposed
structure is suitable to deploy in real-time control systems.

In the future, we will test the DNN-based controller for
the aerial transportation where the system dynamics change
drastically. In addition, we will extensively analyse the
parameters and architecture of DNN and their performances.
Moreover, the analytical stability proof of the proposed
approach will be provided.

ACKNOWLEDGMENT

This research was partially supported by the Singapore
Ministry of Education (RG185/17).



REFERENCES

[1] G. Loianno, V. Spurny, J. Thomas, T. Baca, D. Thakur, D. Hert,
R. Penicka, T. Krajnik, A. Zhou, A. Cho, M. Saska, and V. Kumar,
“Localization, grasping, and transportation of magnetic objects by a
team of mavs in challenging desert-like environments,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1576–1583, July 2018.

[2] A. Sarabakha and E. Kayacan, “Y6 Tricopter Autonomous Evacuation
in an Indoor Environment Using Q-Learning Algorithm,” in 2016
IEEE 55th Conference on Decision and Control (CDC), Dec 2016,
pp. 5992–5997.

[3] L. Teixeira and M. Chli, “Real-time local 3d reconstruction for aerial
inspection using superpixel expansion,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), May 2017, pp. 4560–
4567.

[4] N. J. Sanket, C. D. Singh, K. Ganguly, C. Fermüller, and Y. Aloi-
monos, “GapFlyt: Active Vision Based Minimalist Structure-Less
Gap Detection For Quadrotor Flight,” IEEE Robotics and Automation
Letters, vol. 3, no. 4, pp. 2799–2806, Oct 2018.

[5] E. Kayacan, E. Kayacan, H. Ramon, and W. Saeys, “Adaptive Neuro-
Fuzzy Control of a Spherical Rolling Robot Using Sliding-Mode-
Control-Theory-Based Online Learning Algorithm,” IEEE Transac-
tions on Cybernetics, vol. 43, no. 1, pp. 170–179, Feb 2013.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol.
521, pp. 436–444, May 2015.

[7] S. Zhou, M. K. Helwa, and A. P. Schoellig, “An Inversion-Based
Learning Approach for Improving Impromptu Trajectory Tracking of
Robots With Non-Minimum Phase Dynamics,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1663–1670, July 2018.

[8] B. J. Emran and H. Najjaran, “Adaptive neural network control of
quadrotor system under the presence of actuator constraints,” in 2017
IEEE International Conference on Systems, Man, and Cybernetics
(SMC), Oct 2017, pp. 2619–2624.

[9] S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin,
“Learning quadrotor dynamics using neural network for flight control,”
in 2016 IEEE 55th Conference on Decision and Control (CDC), Dec
2016, pp. 4653–4660.

[10] S. A. Nivison and P. P. Khargonekar, “Development of a robust deep
recurrent neural network controller for flight applications,” in 2017
American Control Conference (ACC), May 2017, pp. 5336–5342.

[11] A. Punjani and P. Abbeel, “Deep learning helicopter dynamics mod-
els,” in 2015 IEEE International Conference on Robotics and Automa-
tion (ICRA), May 2015, pp. 3223–3230.

[12] N. Mohajerin and S. L. Waslander, “Modular Deep Recurrent Neural
Network: Application to Quadrotors,” in 2014 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), Oct 2014, pp.
1374–1379.

[13] Q. Li, J. Qian, Z. Zhu, X. Bao, M. K. Helwa, and A. P. Schoellig,
“Deep neural networks for improved, impromptu trajectory tracking
of quadrotors,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), May 2017, pp. 5183–5189.

[14] R. Mahony, V. Kumar, and P. Corke, “Multirotor Aerial Vehicles: Mod-
eling, Estimation, and Control of Quadrotor,” Robotics Automation
Magazine, IEEE, vol. 19, no. 3, pp. 20–32, 2012.

[15] M. Sun and D. Wang, “Analysis of Nonlinear Discrete-Time Systems
with Higher-Order Iterative Learning Control,” Dynamics and Control,
vol. 11, no. 1, pp. 81–96, Jan 2001.

[16] S. Zhou, M. K. Helwa, and A. P. Schoellig, “Design of deep neural
networks as add-on blocks for improving impromptu trajectory track-
ing,” in 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), Dec 2017, pp. 5201–5207.

[17] J. M. Mendel, Type-1 Fuzzy Systems. Springer International Publish-
ing, 2017, pp. 101–159.

[18] A. Sarabakha, C. Fu, E. Kayacan, and T. Kumbasar, “Type-2 Fuzzy
Logic Controllers Made Even Simpler: From Design to Deployment
for UAVs,” IEEE Transactions on Industrial Electronics, vol. 65, no. 6,
pp. 5069–5077, June 2018.

[19] A. Sarabakha, C. Fu, and E. Kayacan, “Double-Input Interval Type-2
Fuzzy Logic Controllers: Analysis and Design,” in IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), July 2017, pp. 1–6.

[20] T. Lee, M. Leok, and N. H. McClamroch, “Nonlinear Robust Tracking
Control of a Quadrotor UAV on SE(3),” Asian Journal of Control,
vol. 15, no. 2, pp. 391–408, 2013.


	INTRODUCTION
	PROBLEM FORMULATION
	Dynamical Model of Unmanned Aerial Vehicle
	Problem Description

	METHODOLOGY
	Offline Pre-Training
	Online Training

	EXPERIMENTAL SETUP
	Deep Neural Network Structure
	Data Collection

	EXPERIMENTAL RESULTS
	Discussion

	CONCLUSIONS
	References

