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Abstract—Fast and robust gate perception is of great im-
portance in autonomous drone racing. We propose a _convo-
lutional neural network-based gate detector (GateNeﬂ) that
concurrently detects gate’s center, distance, and orientation with
respect to the drone using only images from a single fish-eye
RGB camera. GateNet achieves a high inference rate (up to 60
Hz) on an onboard processor (Jetson TX2). Moreover, GateNet
is robust to gate pose changes and background disturbances.
The proposed perception pipeline leverages a fish-eye lens with
a wide field-of-view and thus can detect multiple gates in
close range, allowing a longer planning horizon even in tight
environments. For benchmarking, we propose a comprehensive
dataset (AU-DR) that focuses on gate perception. Throughout
the experiments, GateNet shows its superiority when compared
to similar methods while being efficient for onboard computers
in autonomous drone racing. The effectiveness of the proposed
framework is tested on a fully-autonomous drone that flies on
previously-unknown track with tight turns and varying gate
positions and orientations in each lap.

I. INTRODUCTION

Long-term applications of drone technology include their
use in any unstructured environment [1], [2] such as search
and rescue missions in underground mines [3], [4], detection
and monitoring of victims trapped under collapsed build-
ings [5], aerial radiation detection in nuclear power plants
after an accident [6], or aerial surveillance [7]-[10] . In these
applications, knowledge about the environment is either not
accessible or corrupted. Since flight duration of drones is
limited due to battery constraints, the task must be executed
as fast as possible without compromising safety. Autonomous
drone racing is one of the best benchmark problems as drones
must push operation to the boundaries of the performance
envelope. Undoubtedly, fast and reliable gate perception
plays a vital role in maneuvering through the gates without
any collision.

In gate pose estimation, traditional computer vision meth-
ods tend to fail in complex background with varying lighting
conditions, occlusion, and blurriness [11]-[13]. In contrast,
deep learning algorithms offer more robust performance.
Jung et al. [14] use a deep neural network (DNN) for gate
center estimation, yet the network size is considerably large,
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Fig. 1.  An illustration of the working principles of our gate perception
system. The scene images are captured by a single wide-FOV fish-eye RGB
camera and fed into GateNet to estimate the gate center location, as well
as distance and orientation with respect to the drone’s body frame. The
information then will be used to reproject the gate in 3D world frame and
applied an extended Kalman Filter to achieve stable gate pose estimation.

and limited in capability due to not considering gate rotation.
Kaufmann et al. [15] use two separate multilayer perceptrons
to estimate the distribution of the state of a racing gate.
However, it is also a large-scaled DNN achieving a low
inference rate on an onboard processor. Recently, Foehn
et al. [16] train a DNN to segment the four corners of a
gate to correctly identify its pose. While the performance
is impressive, this method and other segmentation-related
methods [12], [13] usually rely on an assumption that the
gate must have corners. This assumption may not be valid
in case racing gates appear in various shapes, that include
circular or elliptic gates. Alternative methods use images as
an input to directly infer an end-to-end planning [17]-[20],
or calculate a steer function [21]. While the results of end-
to-end methods are promising, the decision making might
become less clear, and a robot’s action can be difficult to
verify.

In this study, we propose a novel DNN architecture
for gate perception, GateNet, that can provide an accurate
estimation of a gate pose while being efficient to imple-
ment, achieving a high inference rate (up to 60Hz on an
NVIDIA Jetson TX2). It is robust to gate pose changes
and background disturbances. Unlike other methods that use
segmentation, notably [16], the proposed perception network
predicts the pose of a gate’s center as we seek to maintain
the generality required for a perception pipeline that can
work independent of gate shape assumption. The proposed
perception pipeline leverages a fish-eye camera lens with
wide field-of-view (FOV) and can detect multiple gates in
a tight area, enabling a longer motion planning horizon. A
relatively small network architecture allows us to attain a
high inference rate while requiring less training time.

The contributions of this study are: (i) an efficient and
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Network architecture of the GateNet. After conv2D layers, batch normalization and ReLU are added consecutively. The dense layer is reshaped

into a tensor which has 4 rows and 3 columns to keep the aspect ratio of input images (4:3). The depth of the output tensor is 5 since the network predicts
5 values, including (i) the confidence value, (ii) x and (iii) y offsets, and relative (iv) distance and (v) orientation, for each cell.

robust framework for multiple racing gates’ pose estimation
using fish-eye raw RGB images, (ii) a comprehensive dataset,
called AU-DR, for training and benchmarking, and (iii) real
experiments on a fully-autonomous drone that can complete
previously-unknown tracks with tight turns.

The rest of this work is organized as follows. Section
summarizes our method for gate perception. Section [III|
compares GateNet with the state-of-the-art baselines. Sec-
tion [[V] presents real experiments to show the efficiency of
the approach. Section [V| draws some conclusions from this
work.

II. METHODOLOGY
A. GateNet

Unlike standard object detectors (e.g., [22], [23]) which
predict gates’ locations in the image plane, GateNet unifies
predictions of (i) center, (ii) orientation, and (iii) distance
of gates in a single deep neural network. The network
gets an image as an input and produces an output tensor
including the targeted predictions. The design and number
of parameters of the network enable high inference speed
that is crucial for autonomous drone racing.

1) GateNet Architecture: The network is implemented as
a convolutional neural network (CNN) with a single fully-
connected layer at the end (see Fig. 2). The convolutional
layers extract features from an input image; and the fully-
connected layer predicts the confidence values, gate centers
on the image plane (the pixel values of gate centers’ offsets),
distance and orientation of the gates relative to the drone.

GateNet has six convolutional layers and one fully-
connected layer. The first five convolutional layers are fol-
lowed by batch normalization, rectified linear unit (ReLU)
activation, and max-pooling with the pooling size of two. The
last convolutional layer is followed by batch normalization
and ReLU; but not a pooling layer. The convolutional stream
reduces the shape of the feature activations to 3 x5x 16 which
is small enough to prevent any computation bottleneck for the
sake of real-time inference. At the end of the convolutional
stream, the extracted features are flattened to a 1D vector.
Note that the flatten operator simply reshapes the 3D-tensor
with the shape of 3 x 5 x 16 to a 1D-vector with the
size of 240. Similar to the YOLO architecture in [24], the
reshaping operation allows all hidden neurons in the 3D

tensor to be connected to the hidden neurons in the dense
layer. Therefore, a single hidden neuron in the dense layer
can be coupled to the information that exists in the whole
of the last convolutional layer. We empirically choose the
flatten operation over other dimensionality reduction layers
(e.g., max-pooling) for the last convolutional layer since
the dimension of the last convolution layer is extremely
small, and dimensionality reduction can cause information
loss. The flattened vector is then connected to a fully-
connected (dense) layer. We do not apply any non-linearity
after the fully-connected layer. The output vector is reshaped
to R x C x 5, where R and C' are the numbers of rows and
columns of the output layer. Although reshaping of the output
vector does not affect the network’s forward pass during
inference or backward pass during the back-propagation, it
allows us to have a more intuitive encoding of the target
vectors. The third dimension of the output layer has the size
of five, including (i) the confidence value, (ii) the offset of
a gate center in the x-axis of an image, (iii) the offset of a
gate center in the y-axis of an image, (iv) the orientation of
a gate relative to the drone, (v) the distance of a gate relative
to the drone.

The target samples for training are prepared according
to the spatial layout of gates in an input image. Firstly, an
input image is divided into R rows and C' columns (Fig. 3a).
Then, x and y offsets are calculated for each gate by taking
the differences between the gate’s center and the top-left

Fig. 3. Ground-truth creation process. The pixel coordinates of a gate center
(the green dot in (a)) are calculated using a world-to-image transformation
(a). Then, the center offsets (x and y) are calculated according to the top-left
corner of the grid including the gate center (b). Each cell is assigned with
a confidence value, center offsets, distance, and orientation (c). Note that
since we use linear activations in the final fully connected layer, the center
offsets can be negative in case a gate center falls into the outside of an
image. Therefore, GateNet can predict gate centers for partially observed
gates even if their gate centers are not presented in an input image.



corner of a particular grid in which the gate center appears
(Fig. Bb). Note that, « and y are normalized w.r.t. the size
of the grid. However, since z and y are not bounded with a
non-linear activation (e.g., soft-max), the center offsets can
be negative when a gate center is outside of an input image.
Finally, a target sample, which is a tensor with a shape of
R x C x5, is created to store the targeted variables (Fig. [3d).
The confidence value (c) is set to 1, if a gate center is
presented in the corresponding grid, or is set to 0, otherwise.
The distance (d) and the orientation (f) are relative to the
gate and are measured in meters and radians, respectively.
We empirically choose R and C' as 3 and 4, respectively, to
keep the aspect ratio of the input images (4:3).

2) Loss Function: The network is subject to minimize the
following multi-part objective function:
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where ]l lis a binary scalar denoting the presence of a gate
center in the grid cell with the row index ¢ and the column
index j in a ground-truth sample. x;; and &;; are the ground-
truth and the predicted offsets for x-axis, respectively, in the
grid at (¢, 7). Similarly, y;; and g;; are the ground-truth and
the predicted offsets for y-axis, respectively, in the grid at
(i,7). dij and d;; are the ground-truth and the predicted
relative distances, respectively. 0;; and éij are the ground-
truth and the predicted relative distances, respectively, and
cij and ¢;; are the predicted and ground-truth confidence
values, respectively. '

Similar to the work in [24], introducing IL;’;-)J term allows
the loss function to penalize the network only if a gate center
is present in a particular grid. Furthermore, the network
subject is to minimize the confidence values of grid cells that
do not contain any gate center. We also introduce the non-
trainable parameters of Acoord> Adists Aori» Aobjs Anoobj tO put
weights to the losses for a gate center, distance, orientation,
objectness, and non-objectness, respectively.

B. AU-DR Dataset

We introduce a new large-scale dataset (AU-DR dataseﬂ)
that addresses different scene appearances in gate detection
problem in the context of drone racing. AU-DR dataset con-
tains RGB images captured by a drone camera and annota-
tions of gates presented in the image (Fig. d). Unlike similar
studies, such as [25], we explicitly label the images according
to gate layouts, including images with (i) single gate, (ii)
multiple gates, (iii) occlusion, (iv) partially observable gates,

I'The dataset is available at https://github.com/open-airlab/
GateNet.gitl

Fig. 4.

Samples from the AU-DR dataset. The dataset includes different
gate layout cases that appear in a drone racing scenerio: (a) single gate, (b)
multiple gates, (c) occluded gates, (d) partially observable gates, (e) gates
with a distant layout, and (f) a gate that is too close to the drone’s camera.

(v) too far gates, and (vi) too close gates. Such a classification
allows us to analyze how gate detection algorithms work
for specific cases. Figure [5] shows the histograms of gates’
distances and orientations in the AU-DR dataset. Moreover,
we annotate the gates’ edges with polygons, and provide
segmentation maps for gates in our dataset. Although we do
not use these annotations in our experiments, the AU-DR
dataset includes these annotations for future studies.

We collect the dataset using real racing gates and a
custom-made robot system (see Subsection under
different lighting conditions (e.g., sun light, artificial lights)
in an indoor environment (Aarhus University Deep Tech
Experimental Hub). To collect RGB images, we use a high-
resolution camera with a global shutter, operated at high
frequency (30—50Hz) to minimize motion blur. We choose a
fish-eye lens with a reasonable focal length and a wide field
of view (140 degrees) to improve the observability of the next
gate. The ground-truth information regarding drone’s pose,
gates’ poses are provided using a state-of-the-art motion
capture system infrastructure.

The AU-DR dataset includes 30,203 samples in total. The
dataset is split into three parts: 60% for training, 10% for
validation and 30% for testing. Each data sample consists
of an RGB image with the dimension of 720 x 540, a
scene label, and gate annotations which include (i) the pixel
coordinate of the gate center in an image frame, (ii) distance,
and (iii) orientation of a gate relative to the drone.
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Fig. 5. Histograms of the gates’ distances (a) and orientations (b) in the
AU-DR dataset. The frequency is the number of samples in the dataset.
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III. EVALUATION AND RESULTS

We compare GateNet with ADRNet [14], DroNet [15],
Darknet [24], and the method proposed in [26] for gate
center detection in image plane, and gate distance and orien-
tation prediction relative to the drone. We choose the above
methods as the baselines because 1) the similarity of their
methods to ours, making them comparable, 2) they include
milestone results, as [14] won the IROS autonomous drone
racing competition in 2016 while [15] won the competition
in 2018 and 3) they are publicly available.

A. Baselines

1) ADRNet [14]: Jung et al. propose a variant of the SSD
object detector [23] that is built on top of AlexNet [27]. It
detects bounding box offsets of drone racing gates in a given
image. In our comparison, we use ADRNet as the original to
get bounding box offsets. Furthermore, we change the output
layer of ADRNet with our output layer to predict the same
attributes. This modified network is named ADRNet-mod.

2) Beauty and the Beast [15]: Kaufmann et al. [15]
proposes a DNN composed of a CNN (specifically, DroNet
[28]) for feature extraction and two separate multi-layered
perceptron (MLP) to regress the parameters of a multivariate
normal distribution that describes the estimation of the next
gate’s pose. Their MLP detect one gate (i.e., the next gate)
at each time only. Therefore, it is not compatible with our
dataset where the baselines are evaluated for the detection of
all gates in an input image simultaneously. For the sake of
compatibility, we change the original output layers with the
output layer of our model. As a result, the modified network
(BB-mod) is trained with the AU-DR dataset to compare
with our network architecture.

3) Morales et al. [26]: Morales et al. propose a data
generation method that randomly renders drone racing gates
for any background and illumination conditions. They train
MobileNetv2-SSDLite to detect gates in a flight area. They
assign one of three categories to each gate; first gate (i.e.,
target gate), second target gate, and back gate, which is the
gates facing backwards. They crop a detected rectangular
bounding box area and feed it to a fully connected network
to predict the gate distance. For the sake of compatibility,
we train MobileNetv2-SSDLite with only one class (i.e.,
gate). We use the same fully connected network architecture
proposed in [26] to predict the distance for comparison.

4) Darknet [24]: Redmon et al. [24] propose a single-shot
object detector (YOLO) that works on top of a novel neural
network architecture called Darknet. Moreover, a shallow
implementation of YOLO (Yolov3-Tiny) is used for real-time
object detection. We use Darknet as a baseline for the gate
detection task. For this end, we implement a neural network
(Darknet-mod) using Darknet as a backbone followed by the
output layer of GateNet.

B. Evaluation Metrics

We compare GateNet with baselines in several perception
tasks, including predictions of (i) gate center on image plane,
(ii) gate distance and (iii) orientation relative to the UAV

frame. Firstly, we compute the gate center error taking the
mean absolute error between the predicted and the ground-
truth gate centers on image plane. Using the notation in Eq.
the gate center error (E.), the relative distance (£,) error and
the orientation errors (FEjy) can be formulated as follows:

R C
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where |.| is the absolute value operation, and N is the total
number of test samples.

C. Training Settings

We train GateNet and the baselines with the AU-DR
dataset, with resized images of the same size (160x120).
The maximum limit for the number of training epochs is
set to 300 yet the training is stopped when the validation
error started to increase (usually around 240 epochs). We
use Adam optimizer [29] with the parameters of 5, = 0.9,
By = 0.999, and € = 10~8. The initial learning rate is set
to 0.01, and decayed linearly with 0.1 at epoch 5 and 8.
We use the batch size of 32 for training. For the sake of
compatibility, we use the same training parameters to train
the baselines. The input images are resized to 160 x 120.

D. Results

Table |I| shows the performance of GateNet and other
baselines for the gate detection task on the AU-DR test set.
Thanks to having scene labels in our dataset, we evaluate
the methods’ performances for different gate layouts. The
table also compares the number of network parameters and
their inference speed on an NVIDIA Jetson TX2. As shown
in Table |l GateNet has a light-weight architecture with less
numbers of parameters compared to the baselines. Therefore,
it is significantly faster than other methods for real-time
inference on an NVIDIA Jetson TX2. The rates in Table[llare
calculated considering the inference itself, the pre-processing
(e.g., input resizing, I/O operations) and the post-processing
tasks (e.g., output decoding) which the processor must be
shared during the networks’ forward pass.

As can be seen in Table [I, the original ADRNet is
marginally better to find object centers than GateNet. This
is expected since the ADRNet has a larger number of
parameters that increases the network’s learning capability.
However, the prediction of gate distance and orientation is
not available for the original ADRNet. It is also significantly
slower (14 fps) than GateNet (57 fps). We modify the output
layer of ADRNet (ADRNet-mod) to have the same output
layer as GateNet, but again the results are similar to that of
the original ADRNet.

GateNet is superior in gate distance prediction compared
to other baselines (see Table [[). Moreover, it has better



TABLE I
COMPARISON WITH EXISTING METHODS ON THE AU-DR TEST SET. # INDICATES THE NUMBER OF PARAMETERS IN A NETWORK. FPS REPRESENTS
THE NUMBER OF FRAMES THAT CAN BE PROCESSED PER SECOND DURING INFERENCE WITH THE INPUT IMAGE SIZE OF 160 x 120.

single gate multiple gate occlusion partial too close
method # fps | Ec Eq FEy E. Eq Ey E. Ey Ey E. Eq Ey E. Ey Ey
ADRNet [14] 2,5M 14 | 0.01 n/a n/a 0.02 n/a n/a 0.01 n/a n/a 0.01 n/a n/a 0.01 n/a n/a
ADRNet-mod 25M | 14 | 001 045 006 | 001 109 0.13 | 001 076 0.07 | 001 050 0.08 [ 0.01 032 0.13
BB-mod 478K | 22 | 0.04 007 003 | 008 0.12 007 | 006 0.10 0.04 | 0.06 009 0.04 | 006 0.11 0.09
Morales et al. [26] | 1.IM | 19 | 0.17 035 n/a | 024 122 n/a | 019 041 nfa | 0.12 043 n/a | 016 027 n/a
Darknet-mod 7,8M 9 0.02 0.04 0.01 | 0.04 008 0.02 | 003 0.07 002|003 005 002 003 007 0.03
[ GateNet [ 32K [ 57 002 0.03 002003 006 0037]002 006 002]002 0.04 002]002 005 0.03 |

performance for gate orientation prediction in challenging
cases such as partially observable gates or gates that are too
close to the camera. BB-mod and [26] have higher inference
speed compared to ADRNet and Darknet-mod. However,
their prediction performances are significantly worse than
other baselines.

IV. EXPERIMENTS IN REAL-TIME FLIGHTS
A. Experimental Setup

For real-world experiments, a quadrotor drone (in Fig. [6)
is built on a small carbon fiber frame (250mm) with a
thrust-to-weight ratio of 5 using powerful motors controlled
by a Pixhawk autopilot [30]. The main camera is a high-
frequency Flir Blackfly RGB camera (up to 100Hz). An Intel
Realsense Tracking camera T265 is used for state estimation.
The overall framework runs entirely on-board on an NVIDIA
Jetson TX2 computer. A racing track is created using a set of
square-shaped gates having internal dimensions of 1.5x1.5m

Fig. 6. The drone relies on three main components: (i) GateNet and a
perception pipeline to provide gate detection and gate pose estimation, (ii)
state estimation using a robust embedded solution Intel Tracker T265, (iii) a
state-of-the-art control method that has high accuracy tracking performance,
and a planner capable of generating an optimal minimum-snap trajectory for
smooth navigation through multiple gates, and replanning under unexpected
events. All calculations are handled on-board without any support from
external systems. The coordinate frames W, D, C, T are the world, drone’s
body, camera, and Intel Tracker frames, respectively.

but with different heights. For safety reasons, the track is
placed inside a motion capture system lab, but the system is
not used throughout the experiments.

B. Fish-Eye Perception Pipeline and Global Mapping

We compute a global map (shown in Fig. [7) of the gates
in the racing environment for high-level planning tasks. The
output of GateNet can be represented as a prediction vector
v=1[¢ ¢ d é] of gate center (¢, ¢,) on image plane,
relative distance from the robot to the gate d, and relative
heading angle 0 that can be used to reconstruct the gate
in the world frame by back-projection with respect to the
robot’s pose. As we perform our prediction on a raw image
of a wide-FOV fish-eye lens, it is a non-trivial task for the
back-projection operation since a closed-form solution does
not exist. Therefore, we employ a gradient-search method
as follows. Let W, D,C denote the world, drone’s body,
and camera, respectively. Let pp, pg, pc define the drone’s
position, gate position, and camera position, respectively,
and spc is the position of C' expressed in frame A. Let
R4 describe the rotation matrix from frame A to frame B.
Firstly, the distorted gate 3D coordinates #%, 92 can be back-
projected from the 2D gate’s center in the image plane:

[, gk, )T =K [en,6,,1]T 3)

Fig. 7. Global gate map with estimated gates’ poses (colored) against
ground-truth information (green) during a real experiment, where a drone’s
trajectory can be seen (purple). [Best viewed in color].



with K is the camera intrinsic matrix. Assume an
equidistant distortion model for the fish-eye lens surface:
pa = p 4 kip® + kop® + kap” + kap®, where p =
arctan(4/ (x}é)z + (y’é)2) and (kq,...,ks) are distortion
coefficients. An iterative method is used to find the undis-
torted point starting from an initial solution p = pg =

1/ (ig)z + (gjg)2 A new solution is computed iterativelly
as: p = p + p, where:

. pa—p—ki1p® —kap® — ksp” — kap”
14 3k’1,02 + 5k2p4 + 7k3p6 + 9k54p8 ’

until it converges to the undistorted point or the maximum
number of iterations (10 iterations in our case) is reached.
After this step, undistorted gate 3D coordinates p¢ can be
found by:

“4)

pY = [#, 9, 20]" = s [2h, 98,1, )

where s =

ﬁ“lﬁ . Then, the position of the gate has to be
adjusted by using the estimated distance to the gate d:

d
e (©6)
161~

Finally, the position of the gate in the camera frame has to
be transformed into the world frame:

cbPc =

wbae = wPD

0 0 1
+(RVDV)_l (Rg)_l -1 0 0] ¢be+ pPe
0 -1 0

)

This procedure is repeated for each detected gate. Although,
the computational complexity of the gradient search is
O(nQ), where n is the dimensionality of the search space,
our back-projection method usually converges after a few
iterations and it is limited to 10 iterations. Therefore, it
contributes a negligible amount to the computation time.

To handle the uncertainties coming from the CNN net-
work, we employ an extended Kalman filter (EKF) for each
detected gate. A simplified EKF model for measurement is
as follows:

J]; = -’I;zfp
P =P, +Q,
Ky, =Py HF (HyPy HY + Ry,)™", ®)

xz =, + Kp(z — h(x))),
Plj = (I - KiHy)P, ,

where the posteriori prediction and covariance matrix xz

and P, are updated based on priori estimated z; and P, ,
the newest prediction from the network zj, the calculated
Kalman gain K. I is an identity matrix, and Hy is a Jaco-
bian matrix of the measurement function h(.), which relates
x,, and its measurement 2. () and R are process noise
and measurement noise covariance, respectively. Similar to
previous studies [15], [16], coarse locations of gates on a
track are required to correctly associate a detected gate to
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Fig. 8. Block diagram of the proposed framework with planning, percep-
tion, state estimation, and control.

its respective EKF in the first few steps by comparing the
estimated Euclidean distance error. The performance of the
EKFs will be further discussed on Section

C. Motion Planning and Control

We adopt a flat-state model [31] of a quadrotor that
leverages the differential flatness property:

. )
R = Rw[x],

{ii =Resf+yg
where P denotes the linear acceleration of the drone, e3 =
[0,0,1]7 is a unit vector along the z-axis of the drone body
frame and thrust force f, w denotes its body rates, R is the
rotational matrix given the attitude of the drone, and [X]
denotes a skew-symmetric operator. A geometric controller
with considering motor drag [32] is used, attaining high
accuracy in tracking performance.

In motion planning for agile flights, although sampling-
based algorithms [4], [33] exist thanks to their simplicity
and efficiency, they often require precise dense mapping that
could be slow and expensive. This work uses an optimal tra-
jectory generation method [34], [35] to compute a minimum-
snap flat-state trajectory for the drone to fly through a
perceived gate’s center. Since GateNet can correctly estimate
multiple gates, a low-frequency global planner generates a
smooth trajectory with a long-horizon of planning through
all detected gates. To cope with the uncertainties of gate
perception, a high-frequency receding-horizon local planner
is employed to implement a portion of the global path
through the next gate and add a safe path along the gate’s
normal vector. It can also re-plan in the events of changes
in current gate estimation or a new gate detected (thus,
the global plan may change). Fig. 8| details our planner
architecture.
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Fig. 9. Trajectory of the drone flying autonomously through the set of gates.
The yellow and red spheres indicate the drone’s initial and final positions,
respectively; while the green arrows show the direction of the flight.

D. Experimental Results

In the real-world experiments, the drone completes a race
track (in Fig. [0) consisting of four gates where the gates are
close to each other, with an average inter-distance of 4.5m,
and have variations in both appearances and heights. Due to
the tight racing track, the drone’s speed is capped at 2m/s.
Thanks to the high frequency and accuracy of GateNet, the
EKFs converge fast enough, allowing us to obtain gate pose
estimation even when the targeted gate is close. Fig. [I0]
shows that the EKFs improve the accuracy and consistency
of the predicted model. The perception pipeline only attains
a frequency of 50 — 55Hz in real tests, as the computer
resources are shared with trajectory-tracking controller and
path planning algorithms.

To test the robustness of the gate perception pipeline
throughout a race, we change some gates’ positions, ori-
entations, and also introduce disturbances (such as walk-
ing human and gate pieces) in-between each lap. Table [[]
presents success rates in estimating a gate’s pose when it
varies during the flight. To disregard the effects of control
and planning issues, we count it as a success if the drone
perceives the gate’s new location or orientation, and triggers
a re-planning event. Each entry of the table represents the
success ratio after eight attempts. As can be seen in Table
GateNet can handle position and orientation variations
with reasonable success rates up to 2m and 30°, respectively.
The performance of the gate perception does not decrease
significantly when varying the gate location; however, it is
less robust with orientation changes as performance degrades
if orientation variation is bigger than 45°. The reason is that
the orientation of the gate w.r.t. the camera is negatively
correlated to the area (number of pixels) of the gate in
the image. In other words, the higher yaw angle of the
gate is, the smaller gate will appear in the image. This
can be expressed with the following mathematical relation:
%gate = 100 — 222|6|. Additionally, the network is robust
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Fig. 10. A sample of EKF’s effect on the accuracy and consistency of the
detected gates. The dots illustrate row detections of the gates by GateNet.
The solid lines show the output from EKF and the shaded regions represents
the covariance matrices. The dashed vertical line depicts the instance when
the gate is crossed. GateNet can detect multiple gates’ poses with high
accuracy. In such cases, our perception pipeline maintains a separate EKF
for each individual gate. Typically before the drone passes the previous gate,
the next gate’s location is estimated accurately (less than 0.25m error),
allowing a timely motion re-planing. The wide FOV of the fish-eye camera
significantly increases the chance to see multiple gates.

TABLE II
SUCCESS RATES (IN PERCENTAGE) FOR GATE PASSING BASED ON EIGHT
TRIALS FOR EACH CASE WHEN CHANGING A GATE’S LOCATION AND
ORIENTATION.

» Orentation | oo | y50 | 390 | 450 | 60°
Position
05 m 100 100 | 100 | 75 | 50
1.0 m 100 | 100 | 875 | 50 | 125
1.5 m 100 100 | 75 | 50 | ©
20 m 100 | 87.5 | 75 | 625 | 125

with background perturbations of human movements or gate
piece disturbances (see the supplemental video).

V. CONCLUSION

This work proposes GateNet, a DNN capable of pro-
viding robust gate pose estimation using raw fisheye RGB
images. It achieves high inference rates on a real racing
drone platform. Through extensive real-time experiments,
GateNet’s performance is superior compared with similar
studies, which makes it suitable for autonomous drone rac-
ing. We also provide the AU-DR dataset with standard racing
gate appearance and labeled ground-truth information to help
researchers benchmark existing perception methods, as well
as train their own perception network. We demonstrate the
effectiveness of GateNet in an autonomous racing scenario
under tight environment setting, which can be a test-bed for
improving agile flights in a more realistic conditions. In the
future, we would like to improve the perception pipeline
to also handle collision avoidance and other semantic ob-
ject perception to improve system autonomy. Although our



method is optimized for a specific indoor setting, it could
be beneficial to study how the performance is transferred
to different environments. The ultimate goal is to have an
agile aerial robot working efficiently in search and rescue
missions.
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