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Abstract

Although a considerable amount of effort has been put in to show that fuzzy

logic controllers have exceptional capabilities of dealing with uncertainty, there

are still noteworthy concerns, e.g., the design of fuzzy logic controllers is an

arduous task due to the lack of closed-form input-output relationships which is a

limitation to interpretability of these controllers. The role of design parameters

in fuzzy logic controllers, such as position, shape, and height of membership

functions, is not straightforward. Motivated by the fact that the availability

of an interpretable relationship from input to output will simplify the design

procedure of fuzzy logic controllers, the main aims in this work are derive fuzzy

mappings for both type-1 and interval type-2 fuzzy logic controllers, analyse

them, and eventually benefit from such a nonlinear mapping to design fuzzy logic

controllers. Thereafter, simulation and real-time experimental results support

the presented theoretical findings.
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1. Introduction

Nowadays, fuzzy logic controllers (FLCs) become one of the most popular

model-free methods to control nonlinear systems when their precise mathemat-

ical model is challenging to obtain [1, 2]. Such popularity arises due to several

characteristics of FLCs, e.g., to be able to improve both flexibility and robust-5

ness of the nonlinear system in the presence of disturbances or uncertainties by

using the expert knowledge in the control design [3, 4]. For that reason, FLCs

have been used for the control problems of mobile robots [5], in particular, as a

more challenging control problem, unmanned aerial vehicles (UAVs) [6] whose

precise mathematical model parameters are tedious to obtain.10

Earlier FLCs were categorized as type-1 FLCs (T1-FLCs) and they are still

the most widely used type of FLCs [6, 7]. There are several implementations of

T1-FLC for the real-time applications [8, 9]. However, one of the main challenges

in the design of T1-FLCs is the decision on the shape of membership functions

(MFs) that are used [10]. In other words, there are no clear guidelines on how15

to choose the MFs and their corresponding parameters.

Recently, there has been a growing interest in a more advanced form of

FLCs, namely type-2 FLCs (T2-FLCs) [11, 12]. The transition from T1-FLCs

to T2-FLCs was justified by the fact that type-1 fuzzy sets (FSs) are able to deal

effectively only with bounded levels of uncertainty, while real-world applications20

frequently have to deal with high levels and multiple sources of uncertainties

[13, 14]. Better handling of the uncertainties, e.g., noisy measurements in the

system, using T2-FLCs is provided by the additional degree of freedom bene-

fiting from the footprint of uncertainty (FOU) in their FSs [15, 16]. However,

the additional complexity arises from the inclusion of FOU as well as the third25

dimension [17]. Therefore, the research has tended to focus on interval T2-FLCs

(IT2-FLCs) [18], rather than on general T2-FLCs [19], because the mathemat-

ical formulation of general T2-FLCs is much more complex than that of IT2-

FLCs [20, 21]. The adoption of IT2-FLC allows reducing the computational

complexity which is an immense benefit in real-time applications [22].30
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There are several types of control systems that use FLC as an essential

system component. The majority of applications belong to the class of fuzzy

proportional-integral-derivative (PID) controllers, where it is placed within the

feedback control loop, and computes the PID actions through fuzzy inference

[23]. In [24], more systematic analysis and design for conventional double-input35

T1-FLC (DI-T1-FLC) are presented. In [25], a fuzzy variable structure con-

trol is introduced for designing and tuning of DI-T1-FLC based on variable

structure control theory. The fuzzy PID controller derived in [26] successfully

demonstrated better performance than the conventional PID controller for many

cases, particularly for nonlinear plants. In [27], a function-based evaluation ap-40

proach is proposed for a systematic study of type-1 fuzzy PID controllers. In

[28], a general technique is developed for rigorously deriving analytical input-

output structure for fuzzy controllers that use Zadeh fuzzy AND-operator. In

[29], an analytical structure for fuzzy PID controllers has been derived using

L-type and G-type input FSs, trapezoidal output FSs, algebraic product tri-45

angular norm, bounded sum triangular co-norm, Mamdani minimum inference

method and center of sums defuzzification method.

In recent studies, the impact of FOU on the single-input type-2 fuzzy map-

ping (FM) has been analysed [30]. Undoubtedly, an analytical expression of FM

for IT2-FLCs provides an efficient tool to study IT2-FLCs [31]. Moreover, the50

modern computers can perform the basic algebraic operations, e.g., additions,

subtractions, multiplication and divisions, much more efficiently than the oper-

ations of FSs, e.g., unions, intersections and implications, needed in fuzzy logic

[32]. Therefore, the availability of an analytical form of FM will open new doors

to the use of FLCs in real-time applications. Recently, FM for the single-input55

IT2-FLC case has been analytically derived in [33].

In [34], the analytical structure of a special class of IT2 fuzzy proportional-

derivative (PD) and proportional-integral (PI) controllers that uses the Karnik-

Mendel (KM) iterative algorithm for type-reduction has been presented. In [35],

the mathematical input-output structure of Mamdani IT2 fuzzy PI controllers60

is derived for centroid and averaged defuzzifier. Instead of using common type-
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reduction methods, IT2-FLC analysed in [35] approximates the type-reduced set

by averaging embedded IT2-FLCs. In [36], some recent research results are sum-

marized on understanding the fundamental differences between T1-FLCs and

IT2-FLCs. It has been shown in [36] that IT2-FLC can implement a complex65

control surface that cannot be achieved by T1-FLC using the same rule-base. In

[37], a technique is developed which is capable of deriving the analytical struc-

ture for a wide class of IT2-FLCs. In [38], an explicit solution is proposed to

determine optimal switching points of KM method for double-input IT2-FLCs

(DI-IT2-FLC). In [39], the analytical structural analysis of the simplest DI-IT2-70

FLC is presented. In [40], an approach to derive the analytical structure of a

class of double-input Takagi-Sugeno FLCs is presented. Recently, in [41], the

authors analysed the input-output relationship of various IT2-FLCs with trape-

zoidal FSs, and compared the difference in control performance via analytical

structure approach. Nevertheless, an exhaustive analysis of FM for Mamdani75

DI-IT2-FLCs and real-time validation of the theoretical claims are still missing

in the literature [42]. The continuity of T1-FLCs and IT2-FLCs have been in-

troduced in [43]. Moreover, the study of other properties, such as symmetry

and monotonicity, of FM of double-input FLCs is also missing in the literature.

In this study, by using some appealing observations, we have proposed an al-80

ternative systematic methodology to explicitly derive FMs for both DI-T1-FLC

and DI-IT2-FLC. The proposed procedure to derive an analytical closed-form

relationship between inputs and output provides information on the effect of

FOU parameters. Moreover, the proposed methodology allows the generation

of various control surfaces (CSs) by only reshaping the size of FOU. Further-85

more, by only tuning one FOU parameter, it is possible to develop different

controllers with less aggressive or more aggressive action. Additionally, the

availability of FM allows reducing the computation time for FLCs drastically.

In this work, T1-FLC and IT2-FLC with three triangular antecedent and three

singleton consequent FSs are used to facilitate the illustration of the proposed90

method. Nevertheless, the presented method is not limited to a specific FLC

and it can be applied to any T1-FLC or IT2-FLC to generate its FM in a
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closed-form. In summary, the ultimate goal of this work is to contribute to the

applicability of the double-input FLCs.

The main contributions of this work are:95

• FMs for DI-T1-FLC and DI-IT2-FLC are analytically derived in closed-

form with an alternative systematic approach;

• DI-IT2-FLC are analysed in terms of the role of their FOU parameters on

the CS generation;

• the theoretical claims are validated in simulation and real-time for space-100

craft and aerial robot control case studies.

This study is organised as follows. Section 2 revises the definition of T1-

FLC and provides alternative derivation and mathematical analysis of its FM.

In Section 3 the definitions, derivation and analysis are extended for IT2-FLC

case. Sections 4 and 5 describes simulation and real-time case studies to confirm105

the theoretical assertions. Finally, Section 6 closes this work with conclusion

and possible future work.

2. Double-Input Type-1 Fuzzy Logic Controller

First of all, some important definitions for T1-FLC are reviewed, which will

allow to introduce DI-T1-FLC.110

Definition 1. If M is the number of inputs to FLC and σj ∈ R is the j-th

crisp variable, j ∈ [1,M ], then a type-1 FS Aj is described by a type-1 MF

µA(σj) ∈ [0, 1], i.e.:

Aj = {(σj , µ(σj)) | µA(σj) ∈ [0, 1] ∀σj ∈ R} . (1)

Three triangular type-1 FSs are illustrated in Fig. 1b.

Remark 1. If the MFs in (1) assume only 0 or 1, i.e., µA(σ) ∈ {0, 1}; then,

the T1-FSs degenerate into singleton FSs.
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ϕ0

µϕ
1

−1 1

C1 = N C2 = Z C3 = P

(a) (N)egative, (Z)ero and (P)ositive FSs represented

by three singleton MFs.

σj0

µσj

−1 1

A1
j = N 1 A2

j = Z A3
j = P

(b) (N)egative, (Z)ero and (P)ositive FSs represented

by three triangular type-1 MFs.

σj0

µσj

−1 1

αj

Ã1
j = N 1 Ã2

j = Z Ã3
j = P

(c) (N)egative, (Z)ero and (P)ositive FSs represented by

three triangular interval type-2 MFs.

Figure 1: (N)egative, (Z)ero and (P)ositive FSs represented by three (a) singleton, (b) trian-

gular type-1, and (c) triangular interval type-2 MFs.

Three different singleton FSs are illustrated in Fig. 1a.

Definition 2. In DI-T1-FLC, a FM from σ ∈ R2 to ϕT1 ∈ R is a function115

ϕT1(σ) : R2 → R, where σ =
[
σ1 σ2

]T
.
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Definition 3. If N is the number of rules in a rule-base R for DI-T1-FLC, then

the i-th rule Ri ∈ R, i ∈ [1, N ], is indicated as IF− THEN statement, i.e.:

Ri : IF σ1 is A1,i and σ2 is A2,i, THEN ϕT1 is Ci, (2)

where Ci is a consequent FS.

A typical nine rules rule-base is shown in Table 1. In this table, the rules are

sorted in ascending order w.r.t. the consequent.

Definition 4. In DI-T1-FLC, the firing strength fi(σ) ∈ [0, 1], i ∈ [1, N ], of

the i-th rule is computed with the product t-norm, i.e.:

fi(σ) = µA1,i(σ1) · µA2,i(σ2). (3)

Once the rules in (2) are defined, DI-T1-FLC can be seen as a quantitative

FM from crisp inputs σ to crisp output ϕT1. In order to facilitate the analytical

derivation, the antecedent MFs are designed to be triangular type-1 FSs, as

illustrated in Fig. 1b. The typical representation of a triangular MF is:

µAk
j
(σj) =



0 , σj < ak−1

σj−ak−1

ak−ak−1
, ak−1 ≤ σj ≤ ak

ak+1−σj

ak+1−ak , ak < σj ≤ ak+1

0 , σj > ak+1,

(4)

where k = 1, 2, 3 and j = 1, 2. As can be seen from Fig. 1b, a0 = −∞, a1 = −1,120

a2 = 0, a3 = 1 and a4 = +∞. In this study, to simplify the design complexity,

Table 1: A typical nine rules rule-base of DI-FLC [42].

σ1
σ2

(N)egative (Z)ero (P)ositive

(N)egative R1: (N)egative R2: (N)egative R4: (Z)ero

(Z)ero R3: (N)egative R5: (Z)ero R7: (P)ositive

(P)ositive R6: (Z)ero R8: (P)ositive R9: (P)ositive
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symmetrical MFs are utilized. Besides, the consequent MFs are designed to be

singleton and they are illustrated in Fig. 1a.

For our analytical analysis, complex symbolic computations are needed.

Thus, an equivalent definition of (4) is used [44]:

µAk
j
(σj) = max

(
min

(
σj − ak−1
ak − ak−1

,
ak+1 − σj
ak+1 − ak

)
, 0

)
, (5)

where max and min functions are reformulated as algebraical functions:max (a, b) = a+b+|a−b|
2

min (a, b) = a+b−|a−b|
2 .

(6)

The structure of double-input type-1 fuzzy proportional-derivative (DI-T1-

FPD) controller, which inherits DI-T1-FLC, is shown in Fig. 2. The input125

scaling factors kp and kd are chosen to normalize e and ė to the universe of

discourse of the antecedent MFs, i.e., [−1, 1]. So, e and ė are transformed into

σ1 and σ2, respectively, before inputting them into DI-T1-FLC. Consequently,

the output ϕ from DI-T1-FLC is transformed into the control signal v. The

unscaling gain ko is defined such that the output is denormalized to the domain130

of the control signal. In the adopted control structure, only one parameter has

to be tuned, i.e., ko.

2.1. Derivation of Fuzzy Mapping for DI-T1-FLC

Using the centroid defuzzification [45], the defuzzified output of T1-FLC is:

ϕT1(σ) =

∑N
i=1 fi(σ)Ci∑N
i=1 fi(σ)

. (7)

kd

kp

DI-T1-FLC ko

e

ė

σ1

σ2

ϕT1
v

Figure 2: Structure of DI-T1-FPD controller.
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Table 1 contains nine rules; consequently, N = 9. Substituting (3) into (7):

ϕT1(σ) =

∑9
i=1

(
µA1,i(σ1) · µA2,i(σ2)

)
Ci∑9

i=1 µA1,i
(σ1) · µA2,i

(σ2)
. (8)

Then, combining Definition 3, Table 1 and Fig. 1b, it is clear that µA1,1
=

µA1,2 = µA1,3 = µA2,1 = µA2,4 = µA2,7 = µA1 , µA1,4 = µA1,5 = µA1,6 = µA2,2 =

µA2,5
= µA2,8

= µA2 and µA1,7
= µA1,8

= µA1,9
= µA2,3

= µA2,6
= µA2,9

= µA3 ,

which are defined in (5). Combining Definition 3, Table 1 and Fig. 1a, it is clear

that C1 = C2 = C4 = C1 = −1, C3 = C5 = C7 = C2 = 0 and C6 = C8 =

C9 = C3 = 1. Hence, after performing some simplifications in (8), ϕT1(σ) is

computed:

ϕT1(σ) = σ1 + σ2 −
|σ1|σ2 + σ1|σ2|

2
. (9)

Remark 2. The unit mapping ϕ0(σ) in [−1, 1] is defined as:

ϕ0(σ) =
σ1 + σ2

2
. (10)

The expression in (9) describes DI-T1-FLC in an analytical form. Therefore,

instead of considering DI-T1-FLC as a grey-box, its symbolic representation, i.e.,135

ϕT1(σ), can be used. The generated CS, which maps the two inputs σ1 and σ2

to the output ϕ, is plotted in Fig. 3.

-1
11

0.50.5

σ1σ2

00

0

ϕ
(σ

1
,
σ
2
)

-0.5 -0.5

-1 -1

1

Figure 3: Control surface generated by DI-T1-FLC.
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2.2. Analysis of Fuzzy Mapping for DI-T1-FLC

From the asymptotic computational analysis, the runtime complexity for

T1-FLC represented by (7) is O(2N) which is linear w.r.t. N . While the140

runtime complexity of FM for T1-FLC represented by (9) is O(1) which is

constant. Therefore, independently on the number of rules in the rule-base, the

computational complexity of FM for T1-FLC is constant.

Definition 5. The aggressiveness ε of CS is the value of its gradient δ(σ) in a

neighbourhood of the equilibrium point (0, 0) and in the direction of the unit

vector ŵ, i.e.:

ε = ŵT δ(0, 0). (11)

The gradient of ϕT1(σ) is δT1(σ) = ∇ϕT1(σ). If ŵ =
[

1√
2

1√
2

]T
which is

the unit vector in the direction of
[
σ1 σ2

]
, the aggressiveness becomes:

εT1 = ŵT δT1(0, 0) =
[

1√
2

1√
2

]1

1

 =
√

2. (12)

Remark 3. If the gradient of ϕ0(σ) is δ0(σ) = ∇ϕ0(σ), then the aggressiveness

of the unit mapping in (10) is

ε0 = ŵT δ0(0, 0) =
[

1√
2

1√
2

]1/2

1/2

 =

√
2

2
. (13)

From (12) and (13), it can be observed that ϕT1(σ) is more aggressive than

ϕ0(σ) in the neighbourhood of (0, 0), since εT1 > ε0.145

Theorem 1. If ϕT1(σ) indicates FM of DI-T1-FLC, then

i) ϕT1(σ1, σ2) is an even symmetric function w.r.t. the bisection of the first

(σ1 > 0, σ2 > 0) and third (σ1 < 0, σ2 < 0) quadrants in the Cartesian

plane, i.e., ϕT1(σ1, σ2) = ϕT1(σ2, σ1) ∀σ1 ∈ [−1, 1] ∀σ2 ∈ [−1, 1];

ii) ϕT1(σ1, σ2) is an odd symmetric function w.r.t. the bisection of the second150

(σ1 > 0, σ2 < 0) and fourth (σ1 < 0, σ2 > 0) quadrants in the Cartesian

plane, i.e., ϕT1(−σ1,−σ2) = −ϕT1(σ1, σ2) ∀σ1 ∈ [−1, 1] ∀σ2 ∈ [−1, 1].
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Proof. Using (9), it follows:

i) ϕT1(σ1, σ2) = σ1+σ2− |σ1|σ2+σ1|σ2|
2 and ϕT1(σ2, σ1) = σ2+σ1− |σ2|σ1+σ2|σ1|

2 ;

therefore, ϕT1(σ1, σ2) = ϕT1(σ2, σ1) ∀σ1 ∈ [−1, 1] ∀σ2 ∈ [−1, 1];155

ii) ϕT1(−σ1,−σ2) = −σ1 − σ2 − −|σ1|σ2−σ1|σ2|
2 = −σ1 − σ2 + |σ1|σ2+σ1|σ2|

2 =

−ϕT1(σ1, σ2); therefore, ϕT1(−σ1,−σ2) = −ϕT1(σ1, σ2) ∀σ1 ∈

[−1, 1] ∀σ2 ∈ [−1, 1].

Corollary 1. Using the second property in Theorem 1, ϕT1(σ) can be rewritten

as:

ϕT1(σ) = −ϕT1(−σ). (14)

Theorem 2. If ϕT1(σ) indicates FM of DI-T1-FLC, then ϕT1(σ) is a con-160

tinuous function in the region [−1, 1]2 w.r.t. its input variable σ, i.e., ϕT1 ∈

C0([−1, 1]2).

Proof. First, (9) is decomposed into two components: ϕT1,1(σ) = σ1 + σ2 and

ϕT1,2(σ) = |σ1|σ2+σ1|σ2|
2 . Since ϕT1,1(σ) is a polynomial function, it is con-

tinuous on R2. On the other side, it can be observed that lim
σ1→c

ϕT1,2(σ) =165

ϕT1,2(c) ∀c ∈ R2. Therefore, ϕT1,2(σ) is also continuous on R2. Since ϕT1(σ)

is a linear combination of continuous functions, i.e., ϕT1(σ) = ϕT1,1(σ) −

ϕT1,2(σ), ϕT1(σ) is also a continuous function.

Theorem 3. If ϕT1(σ) indicates FM of DI-T1-FLC, then ϕT1(σ) is a mono-170

tonic increasing function in the region [−1, 1]2 w.r.t. its input variables σ, i.e.,

∂ϕT1

∂σ1
≥ 0 ∧ ∂ϕT1

∂σ2
≥ 0 ∀σ ∈ [−1, 1]2.

Proof. Initially, let’s prove that ϕ(σ) is an increasing function w.r.t. σ1 ∀σ ∈

[−1, 1]2. From 9, ∂ϕ
T1

∂σ1
= 1− σ2sign(σ1)−|σ2|

2 . By observing that |σ2| = σ2sign(σ2),

∂ϕT1

∂σ1
= 1 − σ2(sign(σ1)−sign(σ2))

2 , in which σ2(sign(σ1)−sign(σ2))
2 ∈ [−1, 1] ∀σ ∈175

[−1, 1]2. Consequently, ∂ϕ
T1

∂σ1
∈ [0, 2] ∀σ ∈ [−1, 1]2, and, thus, ∂ϕ

T1

∂σ1
≥ 0 ∀σ ∈

11



[−1, 1]2. From the first result in Theorem 1, if ∂ϕT1

∂σ1
≥ 0 ∀σ ∈ [−1, 1]2, then

∂ϕT1

∂σ2
≥ 0 ∀σ ∈ [−1, 1]2. Therefore, ϕT1 is a monotonic increasing in the region

[−1, 1]2 w.r.t. its input variables σ1 and σ2.

180

3. Double-Input Interval Type-2 Fuzzy Logic Controller

First of all, some important definitions for IT2-FLC are reviewed, which will

allow to introduce DI-IT2-FLC.

Definition 6. In type-2 FS Ã, the upper MF µÃ(σj)∀σj ∈ R is MF which

confines from top FOU(Ã) (coloured solid lines in Fig. 1c); while the lower MF

µ
Ã

(σj)∀σj ∈ R is MF which confines from bottom FOU(Ã) (coloured dashed

lines in Fig. 1c), i.e.:µÃ(σj) = sup{u | µÃ(σj , u) > 1} ∀σj ∈ R ∀u ∈ [0, 1]

µ
Ã

(σj) = inf{u | µÃ(σj , u) > 1} ∀σj ∈ R ∀u ∈ [0, 1].

(15)

Definition 7. If U ≡
[
µÃ(σj), µÃ(σj)

]
∀σj ∈ R is the universe of the secondary

variable u ∈ U , then an interval type-2 FS Ã is described by an interval type-2

MF, i.e.:

Ã = {(σj , u, 1) ∀σj ∈ R ∀u ∈ U} . (16)

Definition 8. In interval type-2 FS Ã, FOU is a limited region (grey areas in

Fig. 1c) which is defined by the union of all µÃ(σj , u) = 1, i.e.:

FOU(Ã) =
{

(σj , u) ∀σj ∈ R ∀u ∈ U ≡
[
µ
Ã

(σj), µÃ(σj)
]}

. (17)

Definition 9. In DI-IT2-FLC, FM from σ ∈ R2 to ϕIT2 ∈ R is a function

ϕIT2(σ) : R2 → R, where σ =
[
σ1 σ2

]T
.185

Definition 10. In DI-IT2-FLC, the i-th rule Ri ∈ R, i ∈ [1, N ], is indicated as

IF− THEN statement, i.e.:

Ri : IF σ1 is Ã1,i and σ2 is Ã2,i, THEN ϕIT2 is Ci. (18)

12



Definition 11. In DI-IT2-FLC, the set of firing strengths Fi(σ) ∈ [0, 1]2, i ∈

[1, N ], of the i-th rule is computed with the product t-norm:

Fi(σ) =

f i(σ) = µA1,i
(σ1) · µA2,i

(σ2)

f
i
(σ) = µ

A1,i
(σ1) · µ

A2,i
(σ2)

 . (19)

Once the rules in (18) are defined, DI-IT2-FLC becomes a quantitative FM

from crisp inputs σ to crisp output ϕIT2. To facilitate the analytical deriva-

tion, the antecedent MFs are designed to be triangular interval type-2 FSs, as

depicted in Fig. 1c. As illustrated in Fig. 1c, DI-IT2-FLC employs completely

overlapping interval type-2 FSs. Consequently, it is ensured that each input σj190

always belong to one or two FSs.

In this study, to simplify the design complexity, symmetrical MFs are uti-

lized. The common way to represent triangular interval type-2 FSs is:
µÃk

j
(σj) = µAk

j
(σj)

µ
Ãk

j

(σj) = αjµAk
j
(σj),

(20)

where αj is the height of the lower MFs and the only parameter to tune [33].

Such a simplification will bring significant advantages when designing a con-

troller.

Remark 4. If αj = 1 ∀j, then µÃj,k
(σj) ≡ µÃj,k

(σj) and interval type-2 FSs195

will degenerate to type-1 FSs.

The structure of double-input interval type-2 fuzzy proportional-derivative

(DI-IT2-FPD) controller, which inherits DI-IT2-FLC with α1 and α2, is depicted

in Fig. 4. The input scaling factors kp and kd are chosen to normalize e and ė

kd

kp
DI-IT2-FLC

(α1, α2)
ko

e

ė

σ1

σ2

ϕIT2
v

Figure 4: Structure of DI-IT2-FPD controller.
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to the universe of discourse of the antecedent MFs, i.e., [−1, 1]. The unscaling200

gain ko is defined such that the output is denormalized to the domain of the

control signal. In the adopted control structure, three parameters have to be

tuned, i.e., α1, α2 and ko.

3.1. Derivation of Fuzzy Mapping for DI-IT2-FLC

By using the defuzzification and type-reduction, the defuzzified output of

IT2-FLC is, as in [46]:

ϕIT2(σ) =
ϕL(σ) + ϕR(σ)

2
, (21)

in which ϕL and ϕR are left and right endpoints of the type-reduced set, respec-

tively. Consequently, it is possible to calculate ϕL and ϕR with KM centroid

type-reduction algorithm [47]:
ϕL(σ) =

∑L
i=1 fi(σ)Ci+

∑N
i=L+1 fi

(σ)Ci∑L
i=1 fi(σ)+

∑N
i=L+1 fi

(σ)

ϕR(σ) =
∑R

i=1 fi
(σ)Ci+

∑N
i=R+1 fi(σ)Ci∑R

i=1 fi
(σ)+

∑N
i=R+1 fi(σ)

,

(22)

in which L and R are the left and right switching points, respectively. Usually,

L and R are computed by an iterative algorithm. Nevertheless, by observing

the structure of the rule-base for double-input FLC in Table 1, each consequent

MF (N, Z, P) can be implied from exactly three rules. Consequently, L and

R are multiples of 3 in interval (1, 9), i.e., L ∈ {3, 6} ∧ R ∈ {3, 6}. By using

the constraint that L ≤ R, three distinct cases for the switching points can be

determined, i.e., < {L = 3, R = 3}, {L = 3, R = 6}, {L = 6, R = 6} >. Each of

these cases defines a region (Ω1, Ω2, Ω3) on [σ1 × σ2] plane, as shown in Fig. 5.

Hence, Ω1, Ω2 and Ω3 are analytically defined as:
Ω1 =

{
{σ1, σ2} ∈ [−1, 1]2 | σ2 ≥ −1, σ2 ≤ ω12(σ1)

}
Ω2 =

{
{σ1, σ2} ∈ [−1, 1]2 | σ2 > ω12(σ1), σ2 < ω23(σ1)

}
Ω3 =

{
{σ1, σ2} ∈ [−1, 1]2 | σ2 ≥ ω23(σ1), σ2 ≤ 1

}
,

(23)

where ω12 and ω23 are the contours which separate Ω1 from Ω2 and Ω2 from

Ω3, respectively. For each region corresponds FM, i.e., ϕIT2
1 (σ), ϕIT2

2 (σ) and
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Figure 5: Three regions of DI-IT2-FLC FM and two contours between them.

ϕIT2
3 (σ). Thus, ϕIT2(σ) can be broken down by using (21):

ϕIT2(σ) =


ϕIT2
1 (σ) = ϕL=3(σ)+ϕR=3(σ)

2 ,σ ∈ Ω1

ϕIT2
2 (σ) = ϕL=3(σ)+ϕR=6(σ)

2 ,σ ∈ Ω2

ϕIT2
3 (σ) = ϕL=6(σ)+ϕR=6(σ)

2 ,σ ∈ Ω3.

(24)

The determination of the he left and right end points allows to derive the

output of DI-IT2-FLC in a closed-form. Therefore, it is possible to find the FM

ϕ(σ) by substituting (19) into (22):

ϕL=3(σ) = σ1(σ2+1)−σ1σ2+σ2(σ1+1)
α1α2(σ1+1)(σ2+1)−σ1−σ2(σ1+1)

ϕL=6(σ) = α1α2σ2−α1α2σ1(σ2−1)
(σ1−1)(σ2−1)+α1α2(σ1+σ2−σ2σ1)

ϕR=3(σ) = α1α2σ1+α1α2σ2(σ1+1)
(σ1+1)(σ2+1)−α1α2(σ1σ2+σ1+σ2)

ϕR=6(σ) = σ1(1−σ2)+σ1σ2−σ2(1−σ1)
α1α2(σ1−1)(σ2−1)−σ1−σ2(σ1−1) ,

(25)
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Now, ϕIT2
1 (σ), ϕIT2

2 (σ) and ϕIT2
3 (σ) are computed with (24):

ϕIT2
1 (σ) = 1

2
α1α2(σ1σ2−σ1−σ2)

(σ1−1)(σ2−1)+α1α2(σ1+σ2−σ2σ1)

+ 1
2

σ1σ2−σ1−σ2

α1α2(σ1−1)(σ2−1)+σ1+σ2−σ1σ2

ϕIT2
2 (σ) = 1

2
σ2(σ1+1)−α1α2σ1(σ2−1)

σ2(σ1+1)−α1α2σ1−α1α2(σ1+1)(σ2−1)

− 1
2

σ1(σ2−1)−α1α2σ2(σ1+1)
σ1(σ2−1)+α1α2σ2−α1α2(σ1+1)(σ2−1)

ϕIT2
3 (σ) = 1

2
α1α2(σ1+σ2−σ1σ2)

(σ1−1)(σ2−1)+α1α2σ1−α1α2σ2(σ1−1)

− 1
2

σ1σ2−σ1−σ2

σ1+σ2−σ1σ2+α1α2(σ1−1)(σ2−1) .

(26)

Finally, by definition the contours which separate Ω1 from Ω2 and Ω2 from Ω3,

respectively, are:ω12 =
{
σ ∈ [−1, 1]2 | ϕR=3(σ) = ϕR=6(σ)

}
ω23 =

{
σ ∈ [−1, 1]2 | ϕL=3(σ) = ϕL=6(σ)

}
,

(27)

ω12 and ω23 are computed as functions of only σ1 with (25):

ω12(σ1) =


−α1α2σ1

σ1−α1α2σ1+1 , σ1 < 0

−σ1

σ1+α1α2−α1α2σ1
, σ1 ≥ 0

(28)

and

ω23(σ1) =


−σ1

α1α2−σ1+α1α2σ1
, σ1 < 0

−α1α2σ1

α1α2σ1−σ1+1 , σ1 ≥ 0.

(29)

Therefore, instead of considering DI-IT2-FLC as a gray-box, its explicit repre-205

sentation in (24), i.e., ϕIT2(σ), can be used.

Remark 5. If α1 = 1 and α2 = 1, then ϕIT2(σ) in (26) will become ϕT1(σ) in

(9).

Remark 6. It can be observed from (25), (26), (28) and (29) that α1 and α2

are always coupled, i.e., α1α2. Therefore, it makes sense to perform the analysis210

only w.r.t. α = α1α2. The reason why α1 and α2 are always coupled is because

the meet operation used to compute the lower firing strengths f
i
(σ), i ∈ [1, N ],

in (19), is the product t-norm.
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3.2. Analysis of Fuzzy Mapping for DI-IT2-FLC

From the asymptotic computational analysis, the runtime complexity for215

IT2-FLC represented by (21) and (22) is O(4N) which is still linear w.r.t. N .

While the runtime complexity of FM for IT2-FLC represented by (26) is O(1)

which is constant. Therefore, independently on the number of rules in the rule-

base, the computational complexity of FM for IT2-FLC is constant in N .

The gradient of ϕIT2(σ) is δIT2(σ) = ∇ϕIT2(σ). By using Definition 5, the

aggressiveness of ϕIT2(σ) can by computed as:

εIT2 = ŵT δIT2(0, 0) =

√
2

2

(
α+

1

α

)
. (30)

This relation is depicted in Fig. 6. For small values of α, the behaviour of DI-220

IT2-FLC becomes more aggressive around (0, 0); while, for high values of α, the

behaviour of DI-IT2-FLC becomes less aggressive around (0, 0).

-1 -0.5 0 0.5 1

<1 = <2
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-0.5

0

0.5

1

'

,1 = 0:1, ,2 = 0:1
,1 = 0:2, ,2 = 0:2
,1 = 0:3, ,2 = 0:3
,1 = 0:5, ,2 = 0:5
,1 = 0:9, ,2 = 0:9

Figure 6: Relation between aggressiveness of ϕIT2(σ) and α.
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(g) α = 0.49.
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Figure 7: Control surface generated by DI-IT2-FLC for different values of α. The

values for α are chosen using the relations α = α1α2 and α1 = α2, where α1 ∈

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Remark 7. It is noted that ϕT1(σ) is not more aggressive than ϕIT2(σ), since

εIT2 ≥ εT1 ∀α and εIT2 = εT1 only when α = 1. Consequently, it is noted

that ϕ0(σ) is less aggressive than ϕIT2(σ), since εIT2 > ε0 ∀α.225

The generated CSs, which map σ1 and σ2 to ϕIT2(σ1, σ2), are plotted in

Fig. 7 for α1 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Distinct CSs can be gen-

erated by simply varying only one parameter of FOU, i.e., α.

Theorem 4. If ϕIT2(σ) indicates FM of DI-IT2-FLC, then

i) ϕIT2(σ1, σ2) is an even symmetric function w.r.t. the bisection of the first230

(σ1 > 0, σ2 > 0) and third (σ1 < 0, σ2 < 0) quadrants in the Cartesian

18



plane, i.e., ϕIT2(σ1, σ2) = ϕIT2(σ2, σ1) ∀σ1 ∈ [−1, 1] ∀σ2 ∈ [−1, 1];

ii) ϕIT2(σ1, σ2) is an odd symmetric function w.r.t. the bisection of the second

(σ1 > 0, σ2 < 0) and fourth (σ1 < 0, σ2 > 0) quadrants in the Cartesian

plane, i.e., ϕIT2(−σ1,−σ2) = −ϕIT2(σ1, σ2) ∀σ1 ∈ [−1, 1] ∀σ2 ∈ [−1, 1].235

Proof.

i) To prove this property, the sufficient and necessary conditions are

ϕIT2
1 (σ1, σ2) = ϕIT2

1 (σ2, σ1), ϕIT2
2 (σ1, σ2) = ϕIT2

2 (σ2, σ1) and ϕIT2
3 (σ1, σ2) =

ϕIT2
3 (σ2, σ1), which is immediate from (26).

ii) To prove this property, the sufficient and necessary conditions are240

ϕIT2
1 (−σ1,−σ2) = −ϕIT2

1 (σ1, σ2) and ϕIT2
2 (−σ1,−σ2) = −ϕIT2

2 (σ1, σ2),

which is immediate from (26).

Corollary 2. Using the second property in Theorem 4, ϕ3(σ) can be rewritten

as:

ϕ3(σ) = −ϕ1(−σ). (31)

Lemma 1. If ϕL=3(σ), ϕL=6(σ), ϕR=3(σ) and ϕR=6(σ) indicate left and right

FMs of the type-reduced set, ω12 and ω23 are the switching borders between

ϕR=3(σ) and ϕR=6(σ) and between ϕL=3(σ) and ϕL=6(σ), respectively, thenϕL=3(σ) = ϕL=6(σ) = 0 | σ2 = ω23(σ1) ∀σ1

ϕR=3(σ) = ϕR=6(σ) = 0 | σ2 = ω12(σ1) ∀σ1.
(32)

Proof. By substituting (28) and (29) into (25), it is possible to observe that

ϕR=3(σ1, ω12(σ1)) = 0 ∧ ϕR=6(σ1, ω12(σ1)) = 0 ∧ ϕL=3(σ1, ω23(σ1)) = 0 ∧245

ϕL=6(σ1, ω23(σ1)) = 0.

Theorem 5. If ϕIT2(σ) indicates FM of DI-IT2-FLC, then ϕIT2(σ) is a con-

tinuous function in the region [−1, 1]2 w.r.t. its input variable σ, i.e., ϕIT2 ∈

C0([−1, 1]2).250
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Proof. As can be observed from (25), no vertical asymptotes exist in ϕL=3(σ),

ϕL=6(σ), ϕR=3(σ) and ϕR=6(σ) in their domains of definition Ω1 ∪ Ω2, Ω3,

Ω1 and Ω2 ∪ Ω3, respectively. Namely, lim
σ→c

ϕL=3(σ) = ϕL=3(c) ∀σ ∈ Ω1 ∪

Ω2 ∧ lim
σ→c

ϕL=6(σ) = ϕL=6(c) ∀σ ∈ Ω3 ∧ lim
σ→c

ϕR=3(σ) = ϕR=3(c) ∀σ ∈

Ω1∧ lim
σ→c

ϕR=6(σ) = ϕR=6(c) ∀σ ∈ Ω2∪Ω3. Therefore, ϕL=3(σ) is continuous255

on Ω1 ∪ Ω2, ϕL=6(σ) is continuous on Ω3, ϕR=3(σ) is continuous on Ω1 and

ϕL=6(σ) is continuous on Ω2 ∪ Ω3.

Besides, by using Lemma 1, lim
σ→c

ϕL=3(σ) = lim
σ→c

ϕL=6(σ) = 0 ∀c =

[c1, c2] | c2 = ω23(c1) ∧ lim
σ→c

ϕR=3(σ) = lim
σ→c

ϕR=6(σ) = 0 ∀c = [c1, c2] |

c2 = ω12(c1). Thus, also the continuity on the border ω23 for ϕL(σ) and on the260

border ω12 for ϕR(σ) is proven. Therefore, ϕL(σ) and ϕR(σ) are continuous in

the region [−1, 1]2, i.e., ϕL ∈ C0([−1, 1]2) ∧ ϕR ∈ C0([−1, 1]2).

Lastly, the Theorem of Continuous Functions states that “the sum of a finite

number of continuous functions is a continuous function”. From (24), ϕIT2
1 (σ),

ϕIT2
2 (σ) and ϕIT2

3 (σ) are sums of continuous functions ϕL=3(σ), ϕL=6(σ),265

ϕR=3(σ) and ϕR=6(σ). Then, also ϕIT2
1 (σ), ϕIT2

2 (σ) and ϕIT2
3 (σ) are all contin-

uous in the region [−1, 1]2, i.e., ϕIT2
1 ∈ C0([−1, 1]2)∧ϕIT2

2 ∈ C0([−1, 1]2)∧ϕIT2
3 ∈

C0([−1, 1]2). From (24), ϕIT2(σ) is a combination of continuous functions

ϕIT2
1 (σ), ϕIT2

2 (σ) and ϕIT2
3 (σ). Therefore, ϕIT2(σ) is also a continuous function

in the region [−1, 1]2.270

Theorem 6. If ϕIT2(σ) indicates FM of DI-IT2-FLC, then ϕIT2(σ) is a mono-

tonic increasing function in the region [−1, 1]2 w.r.t. its input variables σ, i.e.,

∂ϕIT2

∂σ1
≥ 0 ∧ ∂ϕIT2

∂σ2
≥ 0 ∀σ ∈ [−1, 1]2 ∀α ∈ [0, 1].

Proof. Firstly, let’s show that ϕ(σ) is an increasing function w.r.t. σ1275

∀σ ∈ [−1, 1]2. From 26,
∂ϕIT2

1

∂σ1
= α(σ2+1)

(σ1+σ2+σ1σ2−ασ1−ασ2−ασ1σ2+1)2
∧

∂ϕIT2
2

∂σ1
=

α(ασ2
2−σ2

2+1)
2(σ1+α+σ1σ2−ασ1−ασ1σ2)

2 +
α(α−2σ2−σ2

2+2ασ2+ασ2
2)

2(α−σ2+σ1σ2+ασ2−ασ1σ2)
2 ∧ ∂ϕIT2

3

∂σ1
=

α(1−σ2)

(σ1σ2−σ2−σ1+ασ1+ασ2−ασ1σ2+1)2
. Consequently,

∂ϕIT2
1

∂σ1
≥ 0 ∀σ1 ∈ [0, 1] ∀σ2 ∈

[0, 1] ∀α ∈ [0, 1] and
∂ϕIT2

2

∂σ1
≥ 0 (∀σ1 ∈ [−1, 0] ∀σ2 ∈ [0, 1] ∨ ∀σ1 ∈

[0, 1] ∀σ2 ∈ [−1, 0]) ∧ ∀α ∈ [0, 1], which is its definition domain, and
∂ϕIT2

3

∂σ1
≥280
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0 ∀σ1 ∈ [0, 1] ∀σ2 ∈ [0, 1] ∀α ∈ [0, 1]. Therefore, ϕT2 is a monotonic in-

creasing in the region [−1, 1]2 w.r.t. σ1. From the first result in Theorem 4,

if ϕT2 is a monotonic increasing in the region [−1, 1]2 w.r.t. σ1, then ϕT2 is

a monotonic increasing in the same region also w.r.t. σ2. Therefore, ϕT2 is a

monotonic increasing in the region [−1, 1]2 w.r.t. both σ1 and σ2.285

4. Simulation Case Study: Control of Spacecraft

Nowadays, considerable attention is given to active control of aerospace sys-

tems [48], such as the International Space Station. A typical spacecraft consists

of two parts: main rigid body, which contains all the payload instrumentation290

and control hardware, and mobile attachments, such as solar panels, antennae or

telescopes. However, these mobile appendages can induce structural vibrations

that in microgravity conditions interfere strongly with the rigid-body attitude

dynamics, i.e., angular position θ. This often occurs with moving antennae,

e.g., Synthetic Aperture Radars in strip-map mode, and sun-chasing solar pan-295

els. Moreover, large solar panels are sensitive to solar radiation pressure, which

can induce slight perturbations on the orbit and attitude of the satellite, and

Low Earth Orbit satellites with significant cross sections are affected by the at-

mospheric drag. Therefore, the control of a spacecraft with a mobile attachment

is considered to test the controllers developed in Sections 2 and 3.300

The spacecraft with a flexible attachment can be modelled with six state

variables: angular position θ, angular velocity θ̇, modal coordinate q, modal

velocity q̇, auxiliary signal z and its derivative ż. Consequently, the system’s

state is
[
θ θ̇ q q̇ z ż

]T
. The control input to the system is the torque τ

produced by a gyrostat. The model of the system is as in [49]:
θ̈ = τ − 2ωn(1− ζ)ż

q̈ = (θ̇2 − ω2
n)q − 2ζωnq̇ − α(τ − 2ωn(1− ζ)z̈)

z̈ = −2ωnz̈ − ω2
nż + τ,

(33)
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where α is the coupling constant, ωn is the natural frequency, and ζ is the

damping ratio for the flexible appendage.

Remark 8. The parameters of the spacecraft with a flexible arm are selected

as in [49], i.e., α = 0.0802m, ωn = 22.39rad/s and ζ = 0.001. Moreover, the

control input τ is bounded in the range [−100, 100]N ·m.305

4.1. Parameters Settings

Various FOU parameters settings (PSs) are investigated to validate the theo-

retical analysis. The following PSs are chosen: PS-1: α = 0.09, PS-2: α = 0.25,

PS-3: α = 0.36 and PS-4: α = 0.49. In addition, a PS with α = 1.00 (PS-5) is

also tested, which corresponds to DI-T1-FPD according to Remark 5.310

4.2. Results

For the simulation case studies, two important problems in control of a space-

craft are considered: reorientation and stabilisation of the spacecraft. During

the reorientation of the spacecraft, the attitude of the spacecraft is regulated to

reach a new desired value, for example, to increase the signal reception. While315

the stabilisation of the spacecraft is required after some accident, for example,

after the collision with space particles. In both case studies, for the illustrative

simplicity, we show only the control of the spacecraft’s angular position θ.

Remark 9. In the considered case studies, the maximum position error is πrad,

therefore, the proportional input scaling factor is set to: kp = 1
π ; while the320

maximum angular velocity is 50rad/s, so the derivative input scaling factor is

set to: kd = 1
50 . In addition, the control input is bounded between −100 and

100, therefore, the denormalization gain is set to: ko = 100.

4.2.1. Reorientation of the Spacecraft

In this scenario, the aim of the controller is to change the orientation of the325

spacecraft. The spacecraft’s initial state is
[
0 0 0 0 0 0

]T
. Then, it has

to adjust its angular position from 0rad to πrad.
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Figure 8: Angular position regulation of the spacecraft by different controllers.

The angular position regulation results of the designed controllers with PS-1,

PS-2, PS-3, PS-4 and PS-5 are plotted in Fig. 8. This figure shows that DI-IT2-

FPDs with low α (PS-1 and PS-2) have no overshoot, while DI-IT2-FPD with330

high α (PS-5) has the highest overshoot with relatively slow convergence to the

desired value. At the same time, DI-IT2-FPDs with intermediate α (PS-3 and

PS-4) combine the aspects of both smooth and aggressive controllers. Therefore,

the results of this case study support theoretical claims and expectations.

Table 2 shows the calculated Euclidean mean absolute error (MAE), mean

variation of the control signal (MVCS), overshoot, rise time and settling time

Table 2: Properties of developed controllers for attitude control of spacecraft.

Controller PS-1 PS-2 PS-3 PS-4 PS-5 PD

MAE, [rad] 0.643 0.686 0.711 0.736 0.774 0.779

MVCS, [N ·m] 0.008 0.005 0.004 0.003 0.003 0.003

Overshoot, [rad] ∼ 0 ∼ 0 0.122 0.274 0.474 0.532

Rise time, [s] − − 2.38 2.34 2.36 2.35

Settling time, [s] 2.22 2.09 2.11 2.15 3.48 3.56
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at 10% of the desired value. The Euclidean MAE is computed as

MAE =
1

S

S∑
i=1

|θi − θ∗i |, (34)

where S is the number of samples, θi and θ∗i are the actual and desired angular

positions for the i-th sample, respectively. While MVCS is computed as

MVCS =
1

S − 1

S−1∑
i=1

|τi+1 − τi|, (35)

where τi is the commanded torque for the i-th sample. As can be observed,335

DI-IT2-FPD controller with PS-1 results in the lowest MAE value, since an

aggressive controller is required to compensate the structural vibrations in mi-

crogravity conditions. At the same time, DI-IT2-FPD controllers with PS-4 and

PS-5 have the lowest MVCS value which optimises the usage of the satellite’s

gyrostat. The overshoot is the lowest for DI-IT2-FPD controllers with PS-1 and340

PS-2 since in frictionless environment an aggressive controller can balance the

angular position better. Consequently, the less aggressive controller is, more

overshoot it will have.

4.2.2. Stabilisation of the Spacecraft

In this scenario, the aim of the controller is to stabilise the spacecraft. Ini-345

tially, the spacecraft is spinning around its main axes at −10rad/s, i.e., its initial

state is
[
π −10 0 0 0 0

]T
. After 2s the controllers are activated to stop

uncontrolled spinning and to stabilise the spacecraft.

The stabilisation results of the designed controllers with PS-1, PS-2, PS-3,

PS-4 and PS-5 are plotted in Fig. 9. This figure shows that DI-IT2-FPD with350

low α (PS-1) has the fastest stabilisation time, while DI-IT2-FPD with high

α (PS-5) and PD have the slowest stabilisation time with largest oscillations.

At the same time, DI-IT2-FPDs with intermediate α (PS-2, PS-3 and PS-4)

combine the aspects of both smooth and aggressive controllers. Therefore, the

results of this case study support theoretical claims and expectations.355

Table 3 shows the calculated Euclidean MAE, MVCS, overshoot, rise time

and settling time at 10% of the desired value. As can be observed, DI-IT2-
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Figure 9: Attitude stabilisation of the spacecraft by different controllers.

FPD controller with PS-1 results in the lowest MAE value, since an aggressive

controller is required to compensate the structural vibrations in microgravity

conditions. At the same time, DI-IT2-FPD controllers with PS-4 and PS-5 have360

the lowest MVCS value which optimises the usage of the satellite’s gyrostat.

The settling time at 10% of the final value is the lowest for the most aggressive

controller because it can compensate the structural vibrations fast and avoid

the oscillation, while less aggressive controllers are not able to mitigate the

oscillations.365

5. Experimental Case Study: Control of Unmanned Aerial Vehicle

Nowadays, unmanned aerial vehicles (UAVs) have become a successful cost-

effective tool in various applications [50], since they can provide a cheap solution

Table 3: Properties of developed controllers for stabilisation of spacecraft.

Controller PS-1 PS-2 PS-3 PS-4 PS-5 PD

MAE, [rad] 0.225 0.373 0.497 0.611 0.766 0.801

MVCS, [N ·m] 0.009 0.005 0.005 0.004 0.004 0.004

Settling time, [s] 0.703 1.306 1.535 1.695 2.945 3.111
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Figure 10: Experimental setup.

to dangerous, dirty and dull missions. However, the design of the flight con-

trollers is still a fundamental problem for multirotors UAVs. Therefore, the real-370

time control of an aerial robot is considered to test the developed controllers

in Sections 2 and 3. Nevertheless, the practical applications of the proposed

approach are not limited to this case study.

5.1. Experimental Setup

The experimental flight tests are conducted in the motion capture system,375

shown in Fig. 10, which provides in real-time the quadcopter’s position: x, y

and z coordinates. The OptiTrack cameras are able to recognise a particular

object according to the pattern of the reflective markers fixed on the object.

The cameras provide the estimated position at a rate of 100Hz. Next, the

control signal is computed by the ground station (CPU: 2.6GHz, 64bit, quad-380

core; GPU: 4GB; RAM: 16GB DDR4) and sent to the quadrotor at a rate of

100Hz. The experimental platform is Parrot Bebop 2. To communicate with

UAV, the robot operating system (ROS) framework is used.

Remark 10. All developed controllers are implemented in C++ as ROS nodes

and are available online at https://github.com/andriyukr/FLC.385
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5.2. Experimental Trajectory

In the experimental scenario, a slanted square-shaped 3D trajectory with

2m square’s side, shown in Fig. 11a, is chosen to test different controllers. This

trajectory is designed to combine several manoeuvres which include hovering,

straight line path, climbing and descending motion. The trajectory includes390

four way-points, located at {[1.0,−1.0, 1.2], [−1.0,−1.0, 0.8], [−1.0, 1.0, 0.8],

[1.0, 1.0, 1.2]}m. Initially, UAV hovers at [1,−1, 1.2]m. Then, it starts flying

towards the next way-point located at [−1.0,−1.0, 0.8]m where it hovers for 10s

before moving to the next way-point.

Remark 11. In the considered case study, PSs are selected to be the same as395

in Subsection 4.1.

Remark 12. In the considered case study, the maximum position error is 2m,

therefore, the proportional input scaling factor is kp = 1
2 ; while the maximum

(a) 3D trajectory tracking. (b) Euclidean error.

(c) x-axis tracking. (d) y-axis tracking. (e) z-axis tracking.

Figure 11: Trajectory tracking of different DI-IT2-FPD controllers in absence of wind.
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speed error is 2m/s, so the derivative input scaling factor is kd = 1
2 . In addition,

the denormalization gain is tuned by trial-and-error method and set to ko = 3.400

5.3. Results

The results of 3D trajectory tracking of the designed DI-T1-FPD position

controller and DI-IT2-FPD position controllers with PS-1, PS-2, PS-3, PS-4

and PS-5 are plotted in Fig. 11a. The Euclidean error is shown in Fig. 11b for

different controllers. The position responses projected on x, y and z axes are405

shown in Figs. 11c, 11d and 11e. These figures show that DI-IT2-FPD with

low α (PS-1) has a high overshoot with an oscillatory action, while DI-IT2-FPD

with high α (PS-5) has no overshooting with relatively slow convergence to the

desired value. At the same time, DI-IT2-FPDs with intermediate α (PS-2 and

PS-3) combine the aspects of both smooth and aggressive controllers. They are410

fast in converging with low overshoots and small oscillations.

Repeating the experiments of each controller for ten times, Table 4 shows

the calculated Euclidean mean absolute error (MAE), mean variation of control

signal (MVCS) for x and y axes, mean overshoot, mean rise time and mean

settling time at 5% of the desired value. The Euclidean MAE is computed as

MAE =
1

S

S∑
i=1

‖pi − p2
i ‖, (36)

where S is the number of samples, pi =
[
xi yi zi

]T
and p∗i =

[
x∗i y∗i z∗i

]T
are the actual and desired positions for the i-th sample, respectively. While

Table 4: Properties of DI-IT2-FPD controllers in absence of wind.

DI-IT2-FPD controller PS-1 PS-2 PS-3 PS-4 PS-5

MAE, [m] 0.299 0.241 0.228 0.240 0.259

MVCS, [◦] 0.314 0.077 0.072 0.041 0.030

Overshoot, [m] 0.515 0.230 0.115 0.023 0.001

Rise time, [s] 1.58 1.60 1.78 3.25 4.63

Settling time, [s] 4.70 2.58 2.13 2.08 3.00
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MVCS is computed as

MVCS =
1

S − 1

S−1∑
i=1

|θ∗i+1 − θ∗i |+ |φ∗i+1 − φ∗i |
2

, (37)

where θ∗i and φ∗i are commanded pitch and roll angles of UAV for the i-th sample,

respectively. As can be observed from Table 4, DI-IT2-FPD controller with PS-

3 results in the lowest MAE value, since this controller has the best combination

of aggressiveness, when UAV is far from the desired position, and smoothness,415

when UAV is close to the desired position. At the same time, DI-IT2-FPD

controller with PS-5 has the lowest MVCS value and smallest overshoot, since it

generates smooth control commands. On the other hand, DI-IT2-FPD controller

with PS-1 has the higher overshoot but the smallest rise time. The settling time

at 5% of the final value is the lowest for DI-IT2-FPD controller with PS-4 which420

undershoots the desired position and is fast to stabilize the UAV.

To check the robustness of the designed controllers, wind disturbances have

been introduced. The maximum wind gust is around 5m/s. Table 5 shows the

average properties of different DI-IT2-FPD controllers after ten experiments for

each case. As can be observed, in the presence of wind the Euclidean MAE425

increases for all the controllers. However, DI-IT2-FPD controller with PS-3

has a good capability to capture the wind disturbance and it results again

in the lowest MAE value. The intensity of control signal again is higher for

more aggressive controllers. At the same time, DI-IT2-FPD controller with PS-

4 has the smallest overshoot because this controller, similarly to DI-IT2-FPD430

Table 5: Properties of DI-IT2-FPD controllers in presence of wind.

DI-IT2-FPD controller PS-1 PS-2 PS-3 PS-4 PS-5

MAE, [m] 0.305 0.259 0.238 0.250 0.282

MVCS, [◦] 0.379 0.105 0.090 0.068 0.061

Overshoot, [m] 0.500 0.268 0.120 0.018 0.028

Rise time, [s] 1.60 1.68 1.70 2.98 4.20

Settling time, [s] 4.88 2.83 2.10 2.00 2.78
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controller with PS-3, has a good capability to capture the wind disturbance. The

rise time increases for more aggressive controllers because the headwind hampers

fast flight and the tailwind does not help to fly faster. While the rise time

decreases for smoother controllers because the headwind does not reduce the

flight speed and the tailwind help to fly faster. For a similar reason, the settling435

time is larger for aggressive controllers and smaller for smooth controllers.

In addition, DI-T1-FPD and DI-IT2-FPD with PS-3 controllers are com-

pared with the conventional PD controller. The results of 3D trajectory track-

ing of PD, designed DI-T1-FPD and DI-IT2-FPD with PS-3 position controllers

are shown in Fig. 12a. The Euclidean error is shown in Fig. 12b for different440

controllers. The position (x, y and z) responses are shown in Figs. 12c, 12d and

12e. The experimental video is available at http://tiny.cc/FM-DI-IT2-FLC.

For the statistical analysis of control performances, the experiments are re-

peated ten times for each controller. To compare the trajectory tracking per-

(a) 3D trajectory tracking. (b) Euclidean error.

(c) x-axis tracking. (d) y-axis tracking. (e) z-axis tracking.

Figure 12: Trajectory tracking of different position controllers in presence of wind.
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Figure 13: Box-plot of the tracking performances of different controllers in presence of wind.

formances, a box-plot is presented in Figs. 13. It is possible to observe that445

on average DI-IT2-FPD controller with PS-3 has the lowest MAE and standard

deviation on the tested trajectory when compared to other controllers.

Table 6 compares the characteristics of five controllers: standard PD, DI-T1-

FPD which uses the standard type-1 fuzzy logic process, DI-T1-FPD* which uses

directly FM in (9), DI-IT2-FPD which uses the standard interval type-2 fuzzy450

logic process and DI-IT2-FPD* which uses directly FM in (24). The average

computation time for the traditional DI-T1-FPD and DI-IT2-FPD controllers

is larger when compared to that of PD. Since in conventional FLCs, first, the

input is fuzzified, then, it goes through the inference engine and, in the end, it is

defuzzified. Moreover, in IT2-FLC, the FSs have to be reduced from type-2 to455

type-1 before the defuzzification. However, in DI-T1-FPD* and DI-IT2-FPD*, a

direct FM is used which drastically reduces the computation time. The design,

implementation and tuning of PD controllers are easy since it has only two

parameters (kp and kd). On the other hand, DI-T1-FPD controller has three

parameters (kp, kd and ko) and DI-IT2-FPD controller has four parameters (kp,460

kd, ko and α). Finally, DI-IT2-FPD controller with PS-3 results in the lowest

MAE value computed from ten experiments.
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5.4. Discussion

From the experimental tests, it can be observed the following:

• For low values of α, DI-IT2-PD controllers generate more aggressive con-465

trol inputs. Consequently, in a real physical system, it results in more

overshoot but lower rising time. If the system is underdamped, it might

result in oscillatory behaviour which increases the settling time.

• For high values of α, DI-IT2-PD controllers generate smoother control in-

puts. Consequently, in a real physical system, it results in undershoot and470

higher rising time but no oscillations occur. Nevertheless, since the control

action is not strong, in disturbed systems, the response will be strongly

affected by these disturbances causing more overshoot/undershoot.

• For moderate values of α, DI-IT2-PD controllers combines the character-

istics of two cases above.475

To summarize, the behaviour of DI-IT2-PD controllers with small values of α,

i.e., 0 < α � 1, is more aggressive around the desired position; while, the

behaviour of DI-IT2-PD controllers with small values of α, i.e., 0 � α ≤ 1,

is less aggressive around the desired position. These observations fully confirm

the analysis in Subsection 3.2. Therefore, α can be called the aggressiveness480

parameter. Lastly, there is no universally good value of α which can satisfy all

Table 6: Characteristics of different types of controllers.

Controller
Computation time

(average), [ms]
Number of
parameters

MAE with
wind [m]

PD 0.008 2 0.314

DI-T1-FPD 1.356
3 0.282

DI-T1-FPD* 0.015

DI-IT2-FPD 1.759
4 0.238

DI-IT2-FPD* 0.017
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the cases. The optimal value of α depends on the application, controlled system

and working environment.

6. Conclusion and Future Work

In this work, the main focus is to design, deploy and analyse DI-T1-FLC and485

DI-IT2-FLC with various PSs. First of all, an alternative systematic approach

to explicitly derive the mathematical input-output relationships of DI-T1-FLC

and DI-IT2-FLC has been presented. These nonlinear closed-form relation-

ships allowed to verify some important characteristics of both DI-T1-FLC and

DI-IT2-FLC, like symmetry, continuity and monotonicity. Then, the design490

method for DI-IT2-FLC has been presented where only one parameter of FOU

has to be selected, i.e., aggressiveness parameter α. By only modifying this

parameter, DI-IT2-FLC controllers can be designed in an easy manner to have

more aggressive or smoother behaviour. In addition, the developed controllers

are computationally faster than the traditional FLCs. To prove these theoreti-495

cal claims, different DI-IT2-FPD controllers with various PSs have been imple-

mented in Matlab and ROS. Then, the developed controllers have been tested,

in a simulation case study, for the attitude control of a spacecraft with flexible

attachments, and, in an experimental case study, for the way-points tracking

control of a quadcopter aircraft. Finally, it has been shown that the theoretical500

claims and expectations match with the results in the case studies.

In the future, an adaptive controller will be designed to take into account the

characteristics of the controlled system and working conditions by adjusting the

aggressiveness parameter α. In addition, the presented analysis can be extended

to a variety of fuzzy logic systems with Gaussian, Elliptic and other types of505

MFs. Moreover, the derivation and analysis of FM for triple-input FLCs will

be performed by using the presented systematic approach.
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