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Abstract In this work, a learning model-free control method is proposed for ac-
curate trajectory tracking and safe landing of unmanned aerial vehicles (UAVs).
A realistic scenario is considered where the UAV commutes between stations at
high-speeds, experiences a single motor failure while surveying an area, and thus
requires to land safely at a designated secure location. The proposed challenge is
viewed solely as a control problem. A hybrid control architecture – an artificial
neural network (ANN)-assisted proportional-derivative controller – is able to learn
the system dynamics online and compensate for the error generated during differ-
ent phases of the considered scenario: fast and agile flight, motor failure, and safe
landing. Firstly, it deals with unmodelled dynamics and operational uncertainties
and demonstrates superior performance compared to a conventional proportional-
integral-derivative controller during fast and agile flight. Secondly, it behaves as
a fault-tolerant controller for a single motor failure case in a coaxial hexacopter
thanks to its proposed sliding mode control theory-based learning architecture.
Lastly, it yields reliable performance for a safe landing at a secure location in case
of an emergency condition. The tuning of weights is not required as the structure
of the ANN controller starts to learn online, each time it is initialised, even when
the scenario changes – thus, making it completely model-free. Moreover, the sim-
plicity of the neural network-based controller allows for the implementation on
a low-cost low-power onboard computer. Overall, the real-time experiments show
that the proposed controller outperforms the conventional controller.
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1 Introduction

Nowadays, the use of UAVs by amateurs with minimal piloting skills, skilled hob-
byists, and licensed pilots for purposes of aerial photography, drone racing, and
hobby, continues to grow [1]. There are two major types of users which lead to the
innovation and development of cutting-edge technology in this sector – military
and consumer industry. The former is mainly interested in long-range endurance
missions, and – thus, usually prefers fixed-wing UAVs, while the latter leans more
toward the vertical take-off and landing (VTOL) capable multicopter UAVs. This
modern-day marvel is improving progressively and it is becoming accessible to
most of the people. Furthermore, besides leisure activities, these UAVs have also
started to assume an important role in a wide range of applications like – trans-
portation [2], surveying and mapping [3], and search and rescue [4].

The above-mentioned applications are possible with the development of sophis-
ticated flight control systems. Generally, these controllers are used for the control
of multicopter UAVs and they can be classified into two categories – model-based
and model-free. The model-based controller requires an accurate knowledge of
the system model. The conventional model-based controllers, like a proportional-
integral-derivative (PID) controller, are commonly used in the industry, and their
modified variants, like nonlinear PID control systems, are also proposed [5]. Other
advanced model-based controllers, like the dynamic feedback linearized controller
[6], and the model predictive controller [7], also provide necessary performance but
their benefits start to diminish in certain situations with uncertainties and non-
linearities. Moreover, since they are model-based, a slight change in the system
configuration (internal or external uncertainty) can lead to a significant degra-
dation in the performance of the controller. Moreover, tuning the parameters for
different scenarios is a time-consuming process.

Typical operations of VTOL aircraft are generally slow and non-aggressive,
where the UAV operates at near-hover conditions which do not pose a signifi-
cant challenge for their control. The applications mentioned above are facile if
accomplished with the aid of advanced flight control systems. This may include
making fast decisions and movements for collision avoidance, during high-speed
flight, or during a motor failure scenario. In such cases, the controller has to react
instantaneously given the time-critical state of the situation. The widespread use
of autonomous vehicles requires high standards as the UAV reaches the boundaries
of performance. Furthermore, safety and reliability become crucial to the success-
ful mission execution. This calls for more complex and reliable control approaches
to oversee such aggressive manoeuvres, maintain stability, and ensure safety and
reliability of the UAV. Model-free control algorithms are more generic approaches
to the control problems since they learn the system dynamics online. These in-
telligent controllers are well versed and their uses in the UAVs are studied by
researchers all around the world [8–10].

For the real-world deployment of multicopters, the robustness to an actuator
failure is one of the fundamental safety requirement. Given the increasing use of
UAVs, some accidents due to sensor/actuator failure are inevitable. Therefore, the
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development of fault-tolerant controllers (FTCs), that can manage the actuator
failure, is becoming more demanding. The aim is to minimize the impact on the
system failure from such faults [11]. In the literature, two alternatives exist to
manage motor failure: active and passive [12]. A nonlinear model predictive control
approach is exhibited in [13] as an active fault-tolerant control method. In the
active FTC approach, fault detection and identification are crucial[14]. Faults can
be detected using the inertial measurements [15], or by generating residuals [16],
among others. Another way of actuator/sensor fault detection and diagnosis is
shown in [17], as the authors use different Kalman filter techniques along with
numerous control approaches like – PID control, gain-scheduled PID control, fuzzy
gain-scheduled PID control, versions of model reference adaptive control – as fault-
tolerant control methods. A drawback of active FTC is a possible deterioration in
performance due to an unexpected behaviour because of the failure [18].

The passive FTC approach requires neither fault detection nor controller recon-
figuration. These controllers are designed to be robust against a class of presumed
faults [19]. A strategy used in [20] is to let the quadcopter yaw freely about an axis
and control the roll, pitch, and translation by tilting this axis with respect to the
body. In this particular case, authors investigated lose of one, two, and even three
propellers while still maintaining position in space. Thus, passive FTC approach
can be exploited with the use of an adaptive controller which “understands” that
the system behaviour has changed and takes necessary actions. The use of intel-
ligent controllers increases the reliability of the UAV in case of faults. The use of
learning-based controller like neural networks, that are model-free by definition,
helps to develop such adaptive controllers [21].

Similar to any other robotics application, a trade-off between robustness and
performance exists in a UAV application where researchers mostly prefer safe and
robust controller tuning, when dealing with more aggressive and accurate con-
trollers. The operation of UAV near the boundaries has always been an alluring
research topic in the literature, as shown in [22], that multi-flips are performed
using a simple learning strategy and the first-principles model. A manoeuvre regu-
lation perspective follows a geometric path with a certain velocity in [23]. Since the
path to be followed is not a time-based reference state, unlike in trajectory track-
ing, a linear quadratic regulator-based controller ensures the exact path-following
to perform such space-dependent manoeuvres. As an alternative solution, the aero-
dynamic effects of blade flapping and thrust variations on a rotor at higher angle
of attacks are studied and are used to develop control techniques for operations in
high-speed aggressive manoeuvres [24]. The authors present a novel feedback lin-
earization controller to take into account such aerodynamic disturbances. A hard-
ware solution to the mentioned problem, used in [25], is the implementation of
the variable pitch rotors. This method expands the normal rotor operation regime
by varying the blade pitch which provides better thrust vectoring to achieve agile
UAV manoeuvres.

Feasible aggressive trajectories emulating constrained indoor environment are
designed in [26,27]. The algorithm generates trajectories in real-time to ensure safe
passage through corridors and satisfy constraints on velocities and accelerations.
A nonlinear controller based on the changing dynamics of the UAV and errors in
the model is developed which ensures the tracking of desired states in the three-
dimensional space. A simple model describing the essential dynamics of the system
is used in an iterative learning algorithm to perform an aggressive motion [28]. The
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knowledge obtained from the successful trajectories is used to reduce the transients
when performing similar subsequent manoeuvres.

The results in [29] shows that a similar adaptive fuzzy-neuro system designed to
handle large number of uncertainties in the operation of the system. The applica-
tions involving fast and agile flights present a challenge to the use of conventional
controllers. Thus, this work presents an ANN-based controller implemented for
FTC to tackle the single motor failure case. This approach is trained by sliding
mode control (SMC) theory-based learning algorithm which works in parallel with
a simple conventional proportional-derivative (PD) controller. Apart from using
the ANN controller as FTC, it is also used in the trajectory tracking problem of
the UAV in case of fast and agile flight manoeuvres. Other than the literature
above, researchers analyze the planning and perception aspects to enable agile
navigation using onboard sensors such as stereo cameras [30], a single camera and
IMU [31]. However, our work focuses on the control part, as mentioned earlier,
to cope with the uncertainties from the unmodelled dynamics of the system and
external effects. We show that an accurate trajectory tracking for agile flights is
achieved in the outdoor environment. Moreover, the proposed ANN structure is
computationally light to be implemented on a low-cost onboard computer.

In this work, we show a unique implementation of an ANN-assisted control
method, which enables both fast flight and agile manoeuvres, allows us to ob-
tain accurate trajectory tracking results without compromising the robustness
and safety in the system, in such varied scenarios. The experimental scenario is
designed to verify the performances of an ANN-assisted control method under
various challenging operational conditions, such as, fast flight, agile manoeuvres
and motor failure. The UAV is launched from the ground station for the surveil-
lance of a distant area. Then, it commutes between the base and destination with
a high-speed flight, reaches the surveillance area, starts the tracking of the agile
section of the trajectory, experiences a single motor failure during the inspection,
and lands safely at an identified secure location. A safe landing is as important
as the mission for the safety of the UAV, people, and property, or safeguarding
any data which was recorded during flight. The UAV is compelled to land at a
safe site in emergency situations like the motor failure scenario discussed before.
The ANN quickly adapts to the changing conditions and performs better than
conventional controllers. This is a major advantage of this approach since being
model-free, there is no need for the remapping of control allocation matrix. The
chosen scenario is not arbitrary in the sense that the possibility of having an actu-
ator failure, while following such agile and challenging paths, is high in UAVs. The
onboard implementation of the approach on the “single-board low-cost comput-
ers” also opens the doors to autonomous flights. Another advantage of this work
is that all the experiments were conducted in the outdoor environment using the
real-time kinematic global positioning system (RTK-GPS), which can be used in
real-world situations.

The contributions of this study can be summarized as follows:

– an ANN-assisted control method is applied to a challenging scenario with fast
flight, agile manoeuvres and motor failure;

– a comparison of the ANN with traditional model-based controllers is carried
out showing the superiority of the proposed learning control approach;
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– the real-time applicability of the proposed learning control method is elabo-
rated using an on-board computer on an aerial robot.

This work is structured as follows: Section 2 gives a brief description of the
dynamical model of the coaxial hexacopter. In Section 3, an overview of the pro-
posed control scheme is presented. In Section 4, the results of the experiments are
described. The work is concluded in Section 5.

2 System model

The platform used is a customised Y6 coaxial hexacopter with six rotors attached
to three arms. The differential thrust produced by each rotor is used for basic
control of the hexacopter. The upper and lower rotors rotate clockwise and counter-
clockwise, respectively. All the rotors produce lift with the thrust vector in the
vertical direction, which in turn translates to roll and pitch motions by tilting the
thrust vector. Figure 1 shows the considered reference frames and sign conventions
for the forces (Fi), torques (τi) and rotational speeds (Ωi) of the rotors, where i
denotes the rotor number. A brief description of the dynamics and kinematics of
the coaxial hexacopter, as in [32], is presented here.

The world-fixed inertial frame or Earth frame is FE = {xE ,yE , zE} and the
body-fixed frame is FB = {xB ,yB , zB}. The dynamics of the system are defined
by assuming the UAV as a rigid body with origin at the centre of gravity of the
UAV. The rolling (τp), pitching (τq), and yawing (τr) moments and total thrust
(T ), as shown in the figure, are produced by the six rotors at any given time.
Considering the dynamics, the system is underactuated and there are four control
inputs (T, τp, τq, τr) which are expressed as:

T = F1 + F2 + F3 + F4 + F5 + F6. (1)
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Fig. 1 Coordinate reference frame and sign conventions
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The moments acting on the UAV with moment arms
(
l,
√
3
2 l,

1
2 l
)

are: τpτq
τr

 =

 (F5 + F6 − F1 − F2)
√

3
2 l

(F3 + F4)l − (F1 + F2 + F5 + F6)1
2 l

τ1 + τ3 + τ5 − τ2 − τ4 − τ6

 . (2)

The position and orientation of the UAV are defined by vectors,
[
x y z

]T ∈ R3

and
[
φ θ ψ

]T ∈ R3 in FE . The time derivatives of these state vectors, v =
[
ẋ ẏ ż

]T
and ω =

[
φ̇ θ̇ ψ̇

]T
, gives the translational and rotational kinematic equations,

which are described as: {
v = RvB

ω = TωB
, (3)

where vB and ωB are linear and angular velocities given by vectors
[
u v w

]T ∈
R3 and

[
p q r

]T ∈ R3 in FB , respectively. Moreover, R and T are the rotation
matrices [33], for transformation from FE to FB using the Z –Y –X Euler angle
rotation sequence, given by:

R =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 , (4)

T =

1 sφtθ cφtθ
0 cφ −sφ
0

sφ
cθ

cφ
cθ

 , (5)

where s�, c�, and t� are sin�, cos�, and tan�, respectively. Finally, the kine-
matic equations in (3) can be framed as:ẋẏ

ż

 = R

uv
w

 ,
φ̇θ̇
ψ̇

 = T

pq
r

 . (6)

The rigid body dynamic equations are derived using the Newton-Euler formu-
lation [34] in the body frame and translate to the final form as:{

mI3v̇B = F − (ωB ×mvB)

Iω̇B = τ − (ωB × I ωB)
, (7)

where m is mass, I3 is a 3× 3 Identity matrix and I is the inertia matrix.
External force F and torque τ are expressed as:

F = Ftotal −

 −mg sin θ

mg cos θ sinφ

mg cos θ cosφ


τ =

τxτy
τz


, (8)
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where Ftotal =
[
0 0 T

]T
. Finally, the dynamic equations in (7) are derived as:



u̇v̇
ẇ

 =
1

m
F −

qw − rvru− pw
pv − qu


ṗq̇
ṙ

 = I−1τ −


Iz − Iy
Ix

qr

Ix − Iz
Iy

pr

Iy − Ix
Iz

qr


. (9)

Thus, the kinematic and dynamic differential equations in (6) and (9) describe
the general mathematical model of the hexacopter. The forces and reaction torques
exerted by the rotors, rotating at Ωi angular velocities, can be formulated as:

{
Fi = KFΩ

2
i

τi = KτΩ
2
i

, (10)

where KF and Kτ are termed as force and torque coefficients and are modeled
based on the motor-propeller combination.

Equations (1) and (2) can be augmented together and expressed in the form:

ν =
[
T τp τq τr

]T
= Bu, (11)

where u =
[
Ω2

1 Ω
2
2 Ω

2
3 Ω

2
4 Ω

2
5 Ω

2
6

]T
is a column vector of actuator inputs (six

rotors) and B ∈ R4×6 is the control allocation matrix given by:

B =


KF KF KF KF KF KF

−KF
√
3
2 l −KF

√
3
2 l 0 0 KF

√
3
2 l KF

√
3

2 l

−KF 1
2 l −KF

1
2 l KF l KF l −KF

1
2 l −KF

1
2 l

Kτ −Kτ Kτ −Kτ Kτ −Kτ

 . (12)

As seen in (12), the control allocation matrix B is not a square matrix for a
(coaxial) hexacopter, since it has four control inputs and six rotors. However, the
pseudo-inverse B+ exists for any matrix B, if it has full rank [35]. In particular,
B+ can be computed as:

B+ = (BTB)−1BT . (13)

In our case, B will have full rank if and only if all of the following conditions
will verify: l 6= 0, KF 6= 0 and Kτ 6= 0. The arm length, force and moment
coefficients of UAV are physical quantities of the hexacopter and they cannot be
equal to 0. Therefore, B will always have full rank and a pseudo-inverse of the
matrix B exists:
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B+ =
1

6



1
KF

−
√
3

KF l
−1
KF l

1
Kτ

1
KF

−
√
3

KF l
−1
KF l

−1
Kτ

1
KF

0 2
KF l

1
Kτ

1
KF

0 2
KF l

−1
Kτ

1
KF

√
3

KF l
−1
KF l

1
Kτ

1
KF

√
3

KF l
−1
KF l

−1
Kτ


. (14)

Remark: The dynamic equations derived are coupled, nonlinear, and the system
to be controlled is underactuated.

3 Control architecture

The concept of neural network-based control is to train a network of neurons
to be able to mimic the actions of a system, just like a human brain [36]. The
neural networks are being used for the control of UAVs for over a decade. Recent
development in neural network-based adaptive flight control may be applied to
control a UAV where the reference commands can be the position, velocity, and
attitude [37]. Traditionally, the process to train a neural network consists of four
steps. Firstly, the training data is collected during the manual flight of the UAV.
Then the neural network is trained using this collected data. The third step is
to get the parameters from the trained network for the use in real-time flight.
Finally, the neural network can use the onboard sensor data and control the flight.
These steps are first carried out in simulation before trying on a real-time flight.
In contrast to this approach, the neural network used in this work can learn online
from scratch and adapt to different situations – thus, minimizing the model error,
and and the stability of the system is ensured using a conventional PD controller.
The block diagram showing the real-time implementation giving the overall view
of the system integration is shown in Fig. 2.

3.1 Artificial neural networks

ANNs are highly regarded for their learning ability from input-output data. An
inter-connected structure of neurons receives the input, processes it, and generates
an output depending on the input and internal state. In a general ANN structure,
the neurons are linked together, as shown in Fig. 3. The neural network is organized
into an input layer, a hidden layer, and an output layer. To the output of each
neuron is given a weight (vi or wi), which is updated in the learning process by a
set of learning rules. The evaluation of the distance from the sliding-mode manifold
determines these weights.

The ANN structure used for the design of the controller in this work has
two input neurons (n1 = 2), one output neuron (n3 = 1), and nine neurons
(n2 = 9) in the hidden layer. The hidden layer defines the learning capabilities
of the ANN. Typically, a large number of neurons in the hidden layer should be
able to provide better convergence values to give desired outputs [38]. However, a
smaller number of neurons may result in better generalisation in terms of different
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Fig. 2 Overall control architecture of the controller for the UAV

situations observed during tests, so like most engineering problems, a trade-off
exists and an optimal number of neurons are selected. The neural networks with
a single hidden layer are universal approximators [39], i.e., provided sufficient
neurons are available, the network can be trained online to learn any measurable
function and is capable of reducing model error [37]. The position error e and
its time derivative ė are given to the developed ANN controller as two inputs,
i.e., x = [e ė]T . The output control signal from ANN is computed as a linear
combination of each input:

uANN =

∑n2

i=1 hiwi∑n2

i=1 hi
=

n2∑
i=1

h̄iwi, (15)
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Fig. 3 Structure of a three-layer artificial neural network
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where h̄i is the normalized value of the output from the ith neuron in the hidden
layer:

h̄i =
hi∑n2

j=1 hj
∀i ∈ [1, n2], (16)

and,

hi = σ

 n1∑
j=1

xjvji

 ∀i ∈ [1, n2], (17)

where k = 1, 2 and σ(�) is a scalar activation function.
In the proposed control scheme, the ANN works in parallel with a conventional

PD controller as shown in Fig. 4. The PD controller ensures the stability of the
system in the initial phase of learning process and acts as a feedback part of the
controller providing sufficient time for ANN to initialize its learning process [21].
Thus, ANN will learn the system dynamics (UAV dynamics, in this case) and
take over the control of the system. With its adaptive learning rates, ANN is
very fast to learn and can instantaneously contribute to better performance, i.e.,
trajectory tracking accuracy, in our case. The control signal u given to the system
is calculated as follows:

u = uPD − uANN, (18)

where uPD and uANN are the control signals generated by PD and ANN controllers,
respectively. The general PD control law is described as follows:

uPD = kpe+ kdė, (19)

where e and ė are the position feedback error and its time derivative, respectively;
kp and kd are termed as proportional and derivative gains, respectively, which are
some positive constants. The ANN controller generates the control signal uANN,
i.e., y = uANN, as output.

According to the control scheme in Fig. 4, it is assumed that the two input
signals, e(t) and ė(t), and their respective time derivatives, ė(t) and ë(t), will
never reach infinite values [40]. Hence, they are bounded by finite real constants
as follows: 

|e(t)| ≤ Be
|ė(t)| ≤ Bė
|ë(t)| ≤ Bë

∀t, (20)

PD

𝑑

𝑑𝑡

𝑒 ሶ𝑒

𝑢ANN

𝑢PD

+

− 𝑢

ANN

Fig. 4 Control scheme: ANN in parallel with PD controller
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where Be > 0, Bė > 0 and Bë > 0 are some real constants. Similarly, the weight
coefficient can be considered bounded such that they minimize the errors, i.e.:{

|W | ≤ BW
|V | ≤ BV

, (21)

where BW > 0 and BV > 0 are some real constant. From (20) and (21), it is
evident that uANN(t) and u̇ANN(t) are also bounded signals:{

|uANN(t)| ≤ Bu
|u̇ANN(t)| ≤ Bu̇

∀t, (22)

where Bu > 0 and Bu̇ > 0 are some real constants.

3.2 Sliding mode control theory-based training algorithm

An SMC parameter adaptation scheme is used for the learning process for ANN.
The SMC framework is designed by selecting a suitable sliding manifold that
will ensure desired system dynamics. Moreover, to fulfill the sliding mode con-
straints/conditions, a dynamic feedback adaptation mechanism or an online learn-
ing algorithm for ANN parameters has to be designed. The SMC provides robust-
ness to parameter uncertainties and external disturbances – thus, is a widely used
control method for nonlinear systems applications.

The difference between the measured output of the system and the output of
the ANN can be defined as a time-varying sliding surface. It is guaranteed that
the system will be on the sliding surface, under certain conditions [41].

A time-varying sliding surface SPD can describe the zero value of the learning
error coordinate uPD(t) by using the theory of SMC [42]:

SPD(uANN, u) = uPD(t) = uANN(t) + u(t) = 0. (23)

Using the condition in (23), the ANN is trained to obtain the desired response such
that it becomes a nonlinear regulator that assists the conventional PD controller.
Thus, the sliding surface for the nonlinear system under control is [43]:

S(e, ė) = ė+ λe, (24)

where λ is a positive constant parameter which determines the slope of the sliding
surface.

A sliding motion will occur on the sliding manifold SPD(uANN, u) = uPD(t) = 0
after a finite time th, if the condition SPD(t)ṠPD(t) = uPD(t)u̇PD(t) < 0 is satisfied
for all t such that [t, th) ⊂ (−∞, th) in some nontrivial semi-open subinterval of
time [44].

The use of sign() function guarantees the convergence of the sliding surface to
zero in finite time. Consequently, uANN(t) is constrained to perfectly follow the
desired output signal u(t) for all t > th. The time instant th is the hitting time
for the learning error τ(t) = 0. For an arbitrary initial condition τ(0), τ(t) will
eventually converge to a small neighbourhood of zero during a finite time th.
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The adaptation laws for the parameters of the ANN are given as follows:ẇi = −α
∑n1

j=1 xj

n2|x|
sign(uPD)

α̇ = 2γ|uPD|
∀i ∈ [1, n2], (25)

where γ > 0 is a sufficiently large positive learning rate which satisfies the con-
dition γ > Bu̇. The pseudo-code of the neural network training is presented in
Algorithm 1. The reader can refer to [45] for the stability proof of the proposed
learning algorithm.

Remark: In the adaptation laws in (25), the learning rate α is variable and its
value evolves during the learning process. This adaptation law allows choosing a
small initial value for α which, consequently, grows during the training phase.

4 Experimental results

The experimental scenario is designed to verify the performances of an ANN-
assisted control method under various challenging operational conditions, such as,
fast flight, agile manoeuvres and motor failure. The real-time tests are conducted
with a coaxial hexacopter, shown in Fig. 5, to validate the performance of the
proposed controller for the different phases in the described scenario. Extensive
simulation studies are carried out to choose from different trajectories and to test
the controller. The Gazebo simulation environment is an open source tool used to
create this realistic scenario of flying UAV with motor failure in the simulation.
Due to its “robust physics engine” and high-graphics robot simulation ability, it is
an ideal choice for most of the researchers in the robotics community. One of the

Algorithm 1: Online training of ANN.

Input: e, ė, uPD

Output: uANN

Data: n2, γ
Result: ANN learns the system dynamics and controls the system online
begin

Get n2 and γ
ANN ← ConstructNetworkLayers(2, n2, 1)
w ← InitializeWeights()
α← α0

repeat
Get e, ė and uPD

x← [e, ė]

ẇi ← −α
∑2
j=1 xj

n2|x|
sign(uPD) ∀i ∈ [1, n2] by using (25)

α̇← 2γ|uPD| by using (25)

hi = σ
(∑2

j=1 xjvji

)
∀i ∈ [1, n2] by using (17)

h̄i ← hi∑n2
j=1 hj

∀i ∈ [1, n2] by using (16)

uANN ←
∑n2
i=1 h̄iwi by using (15)

Send uANN to the system
until Stop

end
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milestones of this paper is the development of the gazebo motor failure plugin

in the Gazebo simulator. The plugin fails the motor of the UAV model in-flight
using the robot operating system (ROS)/Gazebo supported commands. This plugin
helped us to contribute to the sitl gazebo repository of the open source Autopilot
stack group – PX4 Pro Drone Autopilot, on GitHub: https://github.com/PX4/
sitl_gazebo.

The Odroid-XU4 is used as the low-cost and low-power onboard computer.
All the codes are executed on this computer and are written in C++ with the
commands sent over the ROS network – thus, making the system autonomous. The
RTK GPS is used to provide the real-time UAV position: x, y and z coordinates
with an accuracy of 20cm at 5Hz. The position information together with the data
from the inertial measurement unit is fed into the local position estimator which
estimates the pose of UAV. This information is used by the controller to compute
the control signal and provide it to the UAV. A 5GHz wireless network is used
to communicate with the UAV. An additional motor failure circuitry is added on
the UAV consisting of a relay, which helps to trigger the motor failure on-demand
from the radio transmitter. The manual as well as automated failure signals can
be sent to the relay, via-flight controller, to fail the motor in-flight.

Distinctive trajectories are defined for the outdoor tests based on the require-
ments of the application defined earlier. The tracking performance is determined
for each type of controller. The results are compared with the widely known po-
sition controller of the autopilot stack – Pixhawk [46,47] – (referred as PIDFCU)
and a conventional PID position controller (referred as PIDpos) sending attitude-
setpoints – roll, pitch, and yaw angles – and thrust commands. Note that, the gains
used for the PID controller are the same for all the scenarios. A long straight ma-
noeuvre is chosen to track the motion at high-speeds reaching 20m/s for the fast
flight of the UAV. Then the UAV starts the mapping trajectory with 3m-by-5m
dimensions, after reaching the destination area, at a speed of 2m/s. During this
part of the trajectory, the UAV experiences a motor failure and, yet, continues
to complete the trajectory and land safely at the end. It is to be noted that the
experiments were conducted with average wind gusts of 5m/s.

Remark: The goal here is to achieve a greater performance using the proposed
controller in challenging and previously unknown trajectories, for which a perfectly
tuned set of PID gains are not determined. The ANN-assisted conservative PD

Fig. 5 Experimental setup: coaxial hexacopter
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Fig. 6 Position tracking performance of various controllers for an experimental scenario with
fast flight, agile manoeuvres and motor failure (green-shaded portion indicates normal opera-
tional conditions, while red-shaded portion indicates the motor failure)

controller is employed to perform trajectory tracking better than equally well-
tuned PID for the particular case. The advantage is that since the ANN starts
learning online each time from scratch when initialized, it converges faster and
better when compared to other controllers as shown in the results.

The plot in Fig. 6 shows the trajectory tracking of the UAV in 3-dimensional
space over time. The plots are shaded in two colors, the initial green phase shows
the motors are running properly and the red phase starting at 21s mark shows the
flight with motor failure. The motor failure is triggered when the UAV is following
the mapping part of the trajectory. A slight change in z axis seen from the plot
is the initial drop in height due to the instantaneous loss of thrust. The ANN
controller learns it as a disturbance and compensates for the loss. The integral
term of the PID controller also tries to minimize the steady-state error but ANN-
PD is more effective. The UAV lands at the end with the motor failure state and
a huge lag in the PIDFCU’s capability to land can be seen. On the other hand, the
ANN-based controller and PIDpos are more effective at landing compared to the
former. It is to be noted that the landing height is not exactly 0m, but slightly
below that, as the field where the experiments are carried out is not an even surface
- thus, the landing point is below the datum of the takeoff point.

The high speeds, experiencing motor failure, and the wind gusts exert tremen-
dous stresses on the rotors and the UAV inertial dynamics, and thus small devi-
ations from the trajectory are inevitable. The overview of the trajectory as seen
from the top is depicted in Fig. 7. It can be noted that the PIDpos has more devi-
ations from the actual path and the ANN controller follows the sharp bends more
effectively, thus minimizing the overall error. In the trajectory tracking problem,
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Fig. 7 Top view comparison of various controllers for an experimental scenario with fast flight,
agile manoeuvres and motor failure

Fig. 8 Tracking error comparison of various controllers (green-shaded portion indicates normal
operational conditions, while red-shaded portion indicates the motor failure)

the Euclidean error is usually calculated to determine the controller’s performance,
but it may penalize the algorithm as it takes into account the time delay in fol-
lowing the trajectory and not how accurately it is following [48]. Thus, the overall
tracking error in the x, y, and z axes showing the UAV’s capability of following
the actual path is shown in Fig. 8. The ANN controller is able to achieve an overall
improvement of 41% and 55% when compared to the PIDFCU and PIDpos, respec-
tively, for the entire stretch of trajectory. Keeping in mind the high speeds and
the high attitude angles achieved during the trajectory, the error for ANN is quite
small.

The ground speed of the UAV, during the trajectory, for the various considered
controllers is shown in Fig. 9. The ANN accelerates faster and thus tracks the
trajectory better than the other two controllers. The acceleration plot is also shown
in Fig. 9. The UAV follows the mapping part of the trajectory at a speed of 2m/s



16 Siddharth Patel et al.

Fig. 9 Ground speed and acceleration of different controllers (green-shaded portion indicates
normal operational conditions, while red-shaded portion indicates the motor failure)

with a motor failure. The ANN controller working in parallel with a PD controller
is able to stabilize the flight during this scenario and still able to follow the desired
path closely. The UAV lands at the end of the trajectory at a defined location.

The control output of the ANN controller for the x, y, and z axes is shown in
Fig. 10. Note the sudden increase in the control output of z axis as the motor is
failed at the instant of 21s. The performance characteristics of the controllers are
given in Table 1.

5 Conclusions

In this work, an ANN-assisted PD controller is proposed for the control of the UAV
for various challenging conditions. A fast flight manoeuvre at speeds in excess of
18m/s is performed to show the superior performance of the proposed controller.
The UAV experiences a single motor failure while performing a pre-defined task
and the controller handles the failure ensuring the safety of the mission as well
as UAV. The UAV lands at a predefined location, with the motor failure, at the

Table 1 Comparison metrics of controllers

Controller PIDFCU PIDpos ANN-PD

MAE (m) 5.564 6.653 4.288

Max. speed (m/s) 18.812 19.862 19.489

Max. acceleration (m/s2) 5.508 9.125 7.759
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Fig. 10 Control output of ANN controller for x, y, and z axes (green-shaded portion indicates
normal operational conditions, while red-shaded portion indicates the motor failure)

end of the trajectory to protect it from a potential crash. The model-free nature
of the controller helps in accurate trajectory tracking even for high speed and
agile manoeuvres. The advantage of the proposed controller is that it does not
need a well-tuned set of PD gains as it learns online and improves the perfor-
mance metrics while following the trajectory. Moreover, the proposed controller is
computationally cheap to be implemented on the onboard computer of UAV. The
real-time experiments are carried out in the outdoor environment with the use of
RTK-GPS for localization. We show that for all the phases of the considered sce-
nario, the proposed controller outperforms the conventional PID controllers. The
average improvement of the ANN-based controller is above 40%.
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