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PencilNet: Zero-Shot Sim-to-Real Transfer Learning
for Robust Gate Perception in Autonomous Drone
Racing

Huy Xuan Pham'®, Andriy Sarabakha?, Mykola Odnoshyvkin® and Erdal Kayacan'

Abstract—In autonomous and mobile robotics, one of the main
challenges is the robust on-the-fly perception of the environment,
which is often unknown and dynamic, like in autonomous drone
racing. In this work, we propose a novel deep neural network-
based perception method for racing gate detection — PencilNet' —
which relies on a lightweight neural network backbone on top of
a pencil filter. This approach unifies predictions of the gates’
2D position, distance, and orientation in a single pose tuple.
We show that our method is effective for zero-shot sim-to-real
transfer learning that does not need any real-world training sam-
ples. Moreover, our framework is highly robust to illumination
changes commonly seen under rapid flight compared to state-
of-art methods. A thorough set of experiments demonstrates the
effectiveness of this approach in multiple challenging scenarios,
where the drone completes various tracks under different lighting
conditions.

Index Terms—Aerial Systems: Perception and Autonomy;
Aerial Systems: Applications; Aerial Systems: Mechanics and
Control

I. INTRODUCTION

ISION-BASED agile navigation for robotics is an emerg-
V ing research field that has been gaining traction in recent
years [1]-[6]. As technical difficulties hinder the extension
of batteries’ capacity, there is a strong interest in increasing
the speed of robots to expand both the operating range and
systems’ capabilities [7]. This is even more crucial for aerial
systems, like multicopters [8], that are capable of reaching
high speeds in a short time due to their agile nature [9].
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Fig. 1. Composed image of simulated (top left) and real (bottom left) gates

and converted counterparts (right-hand side) with pencil filter. The perception
network is trained solely on simulation data and can accurately perceive racing
gates in real-world environments through a fish-eye camera.

Significant progress for faster quadrotor flights has been made
by addressing drone racing [10], previously thought of as
merely an entertainment application. Although, autonomous
drone racing is an excellent playground for the developed
drone technologies, which can be transferred to other do-
mains [11], such as search and rescue. In autonomous drone
racing, a drone has to fly autonomously and safely through a
track that consists of multiple racing gates [12].

Early works [13]-[15] typically use hand-crafted gate per-
ception on top of traditional control and planning frameworks
to achieve safe gate passing. However, they are less robust
to real-world conditions [16]. Subsequent work exploits deep
neural networks (DNNs) that are more effective in coping
with perception uncertainties [17]. A variant ResNet-8 DNN
with three residual blocks is proposed in [18] and explicitly
estimates a gate distribution. The method in [19] utilizes a
variant of U-Net [20] that provides gate segmentation and
demonstrates robust performance on top of a well-engineered
system. The approach in [16] also segments the gates with U-
Net but associates the gate corners differently by combining
corner pixel searching and re-projection error rejection. Re-
cently, end-to-end methods [21]-[23] using a single DNN that
outputs tracking targets for controllers are considered to reduce
the latency introduced by traditional modulation of perception,
planning, and control sub-problems. In both lines of work, the
quality of a gate perception, either through explicit mapping
of gates or implicit feature-based understanding, dictates the


https://github.com/open-airlab/pencilnet
https://github.com/open-airlab/pencilnet

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2022

system’s overall performance.

Another point to consider is the ease of training the per-
ception network for drone racing. Unlike many robotics appli-
cations, the cost to collect labeled high-speed real-world data
for drone racing is often prohibitive, limiting the use of su-
pervised methods. Therefore, learning through simulation data
is understandably much desired [24]. For this purpose, [21]
uses domain randomization for sim-to-real transfer learning
with robust performance. A reinforcement learning method is
proposed in [22] to learn in simulation a policy for drones that
fly at high speeds but reported high tracking errors in practice
due to the abstraction from input data to real physical drones is
far more complex in reality than in simulation. Unfortunately,
none of these methods has been extensively tested under
various real-world conditions, such as illumination alterations,
which are strongly relevant for drone racing and widely known
to negatively affect the performance of perception networks.

In this work, we propose a hybrid DNN-based approach
demonstrating an effective zero-shot sim-to-real transfer learn-
ing capability for gate perception in autonomous drone racing
navigation. By relying on a smarter input representation using
a low-cost morphological operation, called pencil filtering, we
can bridge the sim-to-real gap so that our perception network
is trained solely in simulation data and works robustly in real-
world racing tracks, even under rapid motions and drastic
lighting changes. The proposed framework attains a high-
speed inference due to the use of our previously proposed
efficient backbone network [25] with a modification to allow
it to work with the new input representation. Our experiments
show that the network’s performance significantly outperforms
the original backbone network [25] and other state-of-the-art
baseline methods in terms of accuracy and robustness.

The rest of this work is organized as follows. The proposed
method for gate perception is detailed in Section II. Section III
presents experiments to evaluate the efficiency of the approach
against the state-of-the-art baselines. A real-world validation
study is presented in Section IV. Finally, Section V concludes
this work.

II. PROPOSED METHOD
A. Pencil Filter

Drastic illumination changes and blurriness caused by rapid
flights have been extensively documented in previous work
as the main factors behind the performance degradation of
visual-based navigation frameworks. In this work, we tackle
these challenges by employing an edge-enhancing technique
known as the pencil filter [26], but unlike [26], we study its
performance under various light intensities and motion blur.
The pencil filter applied to an image emphasizes geometrical
features, such as edges, corners, and outlines but preserves the
overall image structure. This reduces the real-to-sim gap since
images from simulation lack accuracy in objects’ sharpness
and illumination compared to real images, allowing learning
on synthetic data and applying in the real-world environment.
In addition, the pencil filter is an illumination agnostic method
that keeps the light intensity constant in the images. To
extract geometrical features pencil filter first converts an RGB

Algorithm 1 Pencil filter.

1: Input: RGB image I

2: Output: pencil image P

3: function PENCIL_FILTER(I)

4 G «+ grayscale(I)

5 P «+ dilate(G, ellipse)
6: for each y € [1,rows(P)] do
7
8
9

for each z € [1, columns(P)] do
if P(y,z) =0 then

P(y,x) « 255

10: else Gy, 2)

. Y,T
11: P(y,z) « int (255 Py.2) >
12: end if
13: end for
14: end for
15: return P

16: end function

image to a gray-scale format. Then, it applies dilation by
convolving the gray-scale image with an ellipse kernel and
thresholding to obtain local maxima for each pixel in its neigh-
borhood. This morphological operation generally exaggerates
the bright regions of the image. To avoid information loss in
the dark regions, the difference in pixel values of the gray-
scale image and the dilated one is calculated by normalizing
their respective values. The resulting image retains sharp and
bolder edges, accentuating object boundaries. Thus, sim-to-
real transfer performance is strongly enhanced by converting
training RGB images into pencil images. The resulting pencil
image is shown on the right-hand side of Fig. I; while the
pseudo-code of the pencil filter is provided in Algorithm 1.

B. Training Data Generation

The key feature to reduce the gap between simulation and
real-world appearance is the use of photo-realistic images.
Graphical gaming engines allow simulating intricate ambient
effects, mimicking the visual appearance of real environments
and the surrounding noise and perturbations. In this work,
photo-realistic images are generated by Unreal Engine con-
taining racing scenes with vertical gates in multiple environ-
ments with different conditions. Similar to previous drone
racing studies in [19], [25], we use square-shaped gates with
checkerboard-like patterns around each corner. To generate a
large number of distinct images, a wide-angle RGB camera
and the gates are spawned randomly in the environment.
They have to be distorted and interpolated to obtain simulated
images with the same camera parameters as those from a real
camera with a fish-eye lens. Finally, the pencil filter is applied
to the fish-eye images. The pipeline for generating training
images is depicted in Fig. 2.

Using ground-truth information from the simulator, the
RGB fish-eye images are labeled with five variables as a
tuple {z,y,d,0,c}. x and y are normalized pixel differences
between the top-left corner of the grid and the gate’s center,
d is the relative distance to the gate (in meters), and 6 is the
relative orientation of the gate (in radians), calculated as the
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Fig. 2. Synthetic images generation pipeline: first, gates are randomly
spawned in the simulation environment; then, wide-angle images are distorted
with a fish-eye model; finally, the pencil filter is applied.

difference between gate’s yaw (heading) and camera’s yaw
projected onto the horizontal plane. c is the confidence value
of a corresponding grid, which has a value of 1, if a gate center
locates inside, and 0, otherwise. The training dataset includes
more than 30K samples drawn from 13 different environments
with 18 distinct backgrounds and various lighting conditions.
Each data sample consists of annotations of the gates and a
160 x 120 RGB image (illustrated in Fig. 3a). We do not apply
any augmentation to the gates and images. In the training
phase, the RGB images are converted into corresponding
pencil-filtered images (illustrated in Fig. 3b), which retain the
same annotations. The advantage of using simulation for data
collection is that the data distributions are fully controlled,
as shown in Fig. 4a. Note that the training data only contain
labels for the front side of a gate, as the back side does not
provide relevant information.

C. Backbone Detection Network

The detection network takes a 160 x 120 image converted
by the pencil filter as input before normalization. For fea-
ture detection, PencilNet, illustrated in Fig. 5, utilizes as
the backbone a convolutional neural network (CNN), from
our previous work [25], comprising of six 2D convolutional

(b) Synthetic images after applymg pencil ﬁlter

Fig. 3. Samples of the simulation data before (3a) and after (3b) the pencil
filter are applied. The images are generated from different domains with
varying angles and illumination settings. Note that the training images do
not contain bounding boxes of gates, which are illustrated here merely for
better visualization.
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Fig. 4. Distributions of  and y-coordinates, distance and orientation of the
gate on images in training and testing datasets.

(conv2D) layers with a small number of filters in each layer
and one fully-connected (dense) layer to regress detection
outputs. The tensors of PencilNet are modified to process one-
channel images leading to a smaller number of parameters.
Each conv2D layer is followed by a batch normalization and
a rectified linear unit (ReLLU) activation. Besides, the first five
layers use max-pooling with 2 x 2 kernels. In the last conv2D
layer, a small 3 x 5 x 16 tensor is flattened so that each hidden
neuron in the following dense layer can be connected with the
extracted features. As in [25], the network output is reshaped
to RxC'x F, where each grid cell from R = 4 rowsand C = 3
columns contains regressed F' = 5 values of {z,y,d, 0, c}.

D. Training

Similarly to [25], PencilNet uses four losses L.y, L4, Lo
and L., which are center coordinate, distance, orientation and
confidence deviations from true values, respectively:

Loy =0, 35,130 [(-Tij — &) + (vij — gij)Q] :
N 2

‘Cd - Zz_ Zg 1 ObJ ( ij _dlj> ’
N 2

Ly =YL %5 f;“ ( 92‘;‘) ;
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Architecture of the proposed method: PencilNet. The pencil filter is applied to RGB images before feeding them to the first conv2D layers. The

backbone network is similar to [25], with the modification in reducing the number of channels for each filter to work with one-channel input. Each of the
first five conv2D layers is followed by a max-pooling with a 2 X 2 kernel. The tensor in the last conv2D layer is flattened to increase connectivity with the
following dense layer. The output tensor is reshaped as a grid of 4 x 3 cells, where each cell contains five prediction values for pixel offsets to the gate’s

center, relative distance and orientation of the gate, and a confidence value.

The losses are calculated for each grid cell of the output layer
with row and column indices ¢ € [1, R] and j € [1, C]. Terms
with the hat operator (%) denote predicted values. The term
]l(i)?J is a binary variable to penalize the network only when a
gate center locates in a particular grid. The confidence values
for grid cells where a gate center does not present is minimized
with a weight a so that in run time we can threshold the low
confidence predictions, thus reducing false positives. Finally,

the loss function is a weighted term:
L= Alyl:at,y + Ad‘cd + )\9£9 + )\C‘Cca 2

where Az, Ag, Mg, Ac are weights reflecting importance for
each of the losses.

III. GATE DETECTION EVALUATION
A. Baseline Methods

In the first part of our study, we evaluate PencilNet per-
formance for the task of racing gate perception with a few
notable milestone methods that include DroNet variants (used
in [18] and [27]), and ADRNet variants [28]. We also include
the performance of our previously published GateNet [25], to
evaluate the contribution of the pencil filter.

Remark 1: The above baselines are chosen because of
their similarities to our method. Some other state-of-the-art
baselines such as [19] and [16] are not included in this study
due to the differences in training data and target outputs.

1) DroNet variants [18], [21]: A variant of ResNet-8 DNN
with three residual blocks is proposed in [21] to originally
learn a steering policy for a quadrotor to avoid obstacles.
However, due to its efficient structure, many subsequent papers
utilize it as a backbone feature extractor with different output
layers. Kaufmann et al. [18] replace the DroNet’s original
output layers with multi-layer perceptron to estimate the mean
and variance of the next gate’s pose expressed in spherical
coordinates and use the predicted pose for a model predictive
control framework to compute a trajectory for the drone.
Loquercio et al. [21] train DroNet with simulation data using
domain randomization and also change the output layers to
produce a velocity vector that drives the robot through the
gate. Pfeiffer et al. [23] combine DroNet with an attention map
as an end-to-end network to capture visual-spatial information
allowing the system to track high-speed trajectories. In this

work, we compare PencilNet with two variants of DroNet:
DroNet-1.0 with the full set of parameters as in [18], and
DroNet-0.5 with only half of the filters as in [21]. The original
output layers are also modified to produce similar outputs as
our method for compatibility reasons.

2) ADRNet variant [28]: A single-shot object detector
based on AlexNet [29] is proposed in [28] to detect the
bounding box of a gate in an image frame, which is used
to calculate offset velocities needed to guide a drone past
the gate. Since the original ADRNet only detects the gate
center and lacks distance and orientation estimation, this work
also replaces its output layer with our output layer to predict
additional attributes (named ADRNet-mod).

3) GateNet variants [25]: To comprehensively evaluate the
effect of the pencil filter, PencilNet is compared against the
same backbone network, i.e., GateNet, tailored with other edge
detection filters. Three different classical filters are considered,
namely the Sobel filter [30] and Canny filter [31]. Similar to
the pencil filter, these filters transform the input images before
feeding them to the backbone detection network, as illustrated
in Fig. 6.

B. Baselines Training

As mentioned in Section II-B, PencilNet and the other
baseline methods are trained with the same simulation dataset
containing 160 x 120 RGB images. Note that filter models,
such as the proposed method, apply the respective filter on
these images before feeding them into its network. All methods

(a) () (©) (@ (e)

Fig. 6. Visualization of different filters that are considered and evaluated
under bright (the first row) and dark (the second row) lighting: (6a) original
RGB images, and images converted by (6b) pencil filter, (6¢) Sobel filter,
(6d) Canny filter, and (6e) Canny filter with a more conservative threshold.
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use the same training settings, that is set with a batch size of
32, the initial learning rate of 0.01, and linearly decayed by
0.1 at epochs 5 and 8. The models are optimized by Adam
[32] with default parameters of 5, = 0.9, 82 = 0.999, and
e=10"8.

C. Evaluation Metrics

In the evaluation experiments, mean absolute errors (MAE)
are calculated for the aforementioned methods as a measure
of accuracy in predicting gate’s center on the image plane
(E.), distance to the gate (Ej), and orientation of the gate
(Ep) relative to the drone’s body frame with the ground-truth
information as follows:

R C ~ ~

E.= % Die1 Zj:l (1Zi — @izl + |9i5 — viz|)s
R C 7

Bi= %YL chzl dij — dijl, (3)
I .

Ep = % Dim1 Zj:l 1035 — 0i;1,

where NV is the number of test samples. The metrics in (3) pro-
vide the detection accuracy but do not take into account cases
where the model fails to make a prediction and, consequently,
produces no errors. Therefore, in addition to the metrics in (3),
we consider another metric that calculates the percentage of
false negative (FN) predictions, i.e., the number of times a
network does not detect a gate present in the image over the
total number of samples. If a method produces a high FN,
it performs poorly even though the other metrics may appear
decent.

D. Sim-to-Sim and Sim-to-Real Evaluation

Remark 2: By assumption, all gates are upright in all
simulation and real-world environments.

The first objective of the evaluation is to understand how
well the models above generalize their understanding of
the gate perception task in different environments. For this
purpose, all models are evaluated on collected datasets. For
the synthetic test dataset (Sim), samples are drawn from
three simulation environments that have not been used during
the training of PencilNet and other baseline methods. The
real-world images, illustrated in Fig. 7, are obtained from
a quadrotor flying fast random trajectories through gates
positioned in different layouts at various lighting intensities.
The quadrotor is equipped with a high-frequency camera with
a fish-eye lens. A motion capture system is used to provide
ground-truth information for the poses of the drone and gates.
Four real-world datasets (Real N-100, Real N-40, Real N-20
and Real N-10) are collected at night time with 100%, 40%,

U O

(a) Good light (d) Motion blur

Fig. 7. Real-time experiment scenes with different conditions such as
(a) high, (b) medium and (c) low illumination, and (d) blurriness.

(b) Moderate light

(c) Poor light

20% and 10% of artificial light intensity, respectively. Ad-
ditionally, four datasets (Blur Real N-100, Blur Real N-40,
Blur Real-N20 and Blur Real N-10) are collected containing
blur images by increasing both the exposure time of the camera
and flight speeds of the drone at different illumination levels.
The statistics of the synthetic test dataset are similar to those
of the training dataset; while the real-world dataset covers a
wide range of situations with great variations in gate poses,
as shown in Figs. 4b and 4c.

Table I shows the comparison of the gate detection perfor-
mance in various test environments with different backgrounds
and illumination conditions. The number of parameters in each
network and their inference speed measured on an NVIDIA
Jetson TX2 onboard computer in frames per second (fps)
are compared. The proposed method performs reliably in all
environments and illumination conditions. It also outperforms
the baseline methods in real-world datasets, particularly in
lower illumination. Sobel filter appears to have outstanding
performance in the Real-10 dataset, but it produces a high
number of FN predictions and, consequently, performs poorly
in practice. Since PencilNet uses GateNet as its backbone
network and performs a low-cost operation of pencil filter on
small-size images (= 0.3ms on 160 x 120 images), it attains
a high inference rate in real-time.

When illumination decreases, all baseline methods predict
with lower accuracy and produce a higher number of FN
detections. At the same time, the performance of PencilNet
retains high accuracy and a low number of FN predictions.
PencilNet works well in darker environments is due to the
dilation operation in the pencil filter that makes the edges
sharper by extracting local maxima within the neighborhood of
each pixel. Thus, PencilNet can enhance dim edges and enable
the detection of the objects’ geometry. Although other edge de-
tection filters used for the GateNet variants could theoretically
extract similar features, their performance does not translate
well in reality. The main distinction between PencilNet and
other GateNet variants is the robustness to noise. By its nature,
the Sobel filter is based on gradient calculation which is more
sensitive to the noise in the image. On the other hand, the
Canny filter is more robust to noise thanks to the applica-
tion of non-maximum suppression. However, the hysteresis
thresholding requires selecting thresholds that have to be tuned
for various light intensities, as illustrated in Figs. 6d and 6e.
The local maxima extraction through dilation in the pencil
filter does not require parameter tuning. Therefore, PencilNet
is more suitable for drone racing applications where sudden
illumination changes occur frequently.

On the other hand, PencilNet also performs notably better
in sim-to-real schemes compared to other RGB-based models
(ADRNet, DronNet variants, and GateNet). Even though being
trained on photo-realistic images and domain randomization
and having additional color information, it is difficult for these
baseline models to understand the real-world environment
represented in RGB images. Nevertheless, the loss of color
information can negatively affect PencilNet’s performance in
some situations where the color of the gate can be clearly ob-
servable. It is possible to observe from Table I, that PencilNet
produces a slightly higher number of FN predictions when
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TABLE I
COMPARISON OF VARIOUS METHODS ON THE TEST DATASETS FROM DIFFERENT ENVIRONMENTS IN TERMS OF THE NUMBER OF PARAMETERS (#P),
INFERENCE SPEED IN FRAMES PER SECOND (FPS), ACCURACY METRIC (FE¢ IN PIXELS, E4 IN METERS, Ey IN RADIANS) AND FN DETECTIONS IN

PERCENTS.
Method o | s | Sim \ Real N-100 \ Real N-40 Real N-20 Real N-10 \
P |"™ "B E; B, W | E. E; FE;, N | B. FE; FE;, N | E. FE, FE;, N | B. FE; E; FN_|
ADRNet-mod [28] | 25M | 14 | 0.013 0284 0033 2426 | 0067 1028 0252 1964 | 0059 0713 0.143 8636 | 0.06 0.687 0.4 9888 | 0.058 0.685 0.136 97.73
DroNet-1.0 [18] | 478K | 22 | 0.048 0.119 0023 6244 | 0.145 0797 0217 6146 | 0.116 0.657 0129 9991 | 0.115 0.637 0125 9985 | 0.115 0.629 0123 99.84
DroNet:0.5 [27] | 250K | 40 | 0.045 0.106 0022 5158 | 0.144 0778 0216 4701 | 0.115 0.648 0131 9832 | 0.115 0626 0129 99.55 | 0.114 0622 0.126 99.62
GateNet [25] 32K | 57 | 0018 0036 002 2496 | 0071 0323 0228 1574 | 0062 0222 0.51 6601 | 0.066 0234 0.145 6523 | 0.064 0238 0.139 72.07
GateNet + sobel | 32K | 57 | 0.032 0068 0022 27.96 | 0.077 0385 0217 1432 | 0054 0219 013 79.08 | 0.054 0219 031 8836 | 0053 0223 0128 90.79
GateNet + canny | 32K | 57 | 0039 0.112  0.026 7867 | 0.072 0299 0219 9530 | 0.061 0264 0.145 9056 | 0.067 0278 0.144 9310 | 0.065 0268 0.142  89.88
[ PencilNet | 32K | 57 | 0017 0.031 0018 205 | 0.065 0287 0210 1878 | 0.051 02 0.29 3510 | 0.052_ 0209 0.135 36 | 0053 0235 0.4 508
TABLE I

COMPARISON OF VARIOUS METHODS ON THE BLUR IMAGES DATASETS UNDER DIFFERENT ILLUMINATION CONDITIONS IN TERMS OF THE NUMBER OF
PARAMETERS (#P), INFERENCE SPEED IN FRAMES PER SECOND (FPS), ACCURACY METRIC (F. IN PIXELS, FE4 IN METERS, Fy IN RADIANS) AND FN
DETECTIONS IN PERCENTS.

Blur Real N-100 [ Blur Real N-40

[ Blur Real N-20 [ Blur Real N-10 |

{
Method [ E: T, By N | E. o 127) FN | E. Ey Ey FN [ E. Eq Ey FN |
GateNet 0.056 0.3 0.117 1245 | 0.057 0234 0.134 1921 | 0.073 0.236 0.138 59.24 | 0.077 0248 0.145 4852
GateNet + sobel | 0.067 026  0.125 3858 | 0.068  0.25 0.123  39.61 | 0.068 0253 0119 8223 | 0.069 0.277 0.129 88.41
GateNet + canny | 0.069 0253 0.133  85.81 0.08 0234 0.135 80 0.099 0.275 0.135 8599 | 0.101 0281 0.147 85.17
[ PencilNet [ 0048 0248 0.128 20.07 [ 0.049 0225 0.122 1471 [ 0.055 0.207 0.121  23.69 [ 0.061 0215 0.137 26.14 |

evaluated on the real-world dataset Real N-100 compared to
an RGB-based baseline, i.e., GateNet. In this data, the light
intensity is maximum. Therefore, the color of the gate is
clearly visible, providing an advantage for the RGB-based
baseline. However, the rest of the evaluation and experiments
illustrate that, in general, learning geometry through enhanced
edge detection has better performance.

To further highlight the robustness of the pencil filter
over other edge enhancement filter types, Table II shows the
comparison of different filters for gate detection tasks in real-
world blur images that are also commonly observed in drone
racing scenarios. PencilNet significantly outperforms other
filters in gate center and distance prediction metrics, while
having strong performance on orientation prediction with a
much lower number of FNs.

A pivotal idea to ensure a successful sim-to-real transfer
learning is to narrow the gap between the quality of images
rendered by the simulator and the real images obtained from
the drone’s camera. Thanks to the pencil filter’s intelligent
abstraction of input data, the network performance is not
affected much by ambiance noise and intricate lighting in real-
world conditions, as shown in Fig. 8. This finding is aligned

with previous methods that are trained only on simulation
data but achieve good real-time performances by adopting a
simpler input representation, such as depth map [33], [34].
The pencil filter should also be considered as another smart
input representation for sim-to-real applications.

IV. EXPERIMENTAL VALIDATION

To demonstrate the usefulness of our proposed method, real-
world experiments are set up with typical conditions as in
recent autonomous drone racing applications, in which a small
quadrotor traverses through various sequences of square gates.
The drone is equipped with a single RGB camera running at
50Hz for gate perception, and an Intel Realsense Tracking
camera T265 provides pose and velocities estimation. In the
following experiments, PencilNet and the baseline methods are
run on an NVIDIA Jetson TX2 computer, together with other
perception, planning, and control pipelines whose details are
provided below.

A. Gate Mapping

As in similar studies [18], [19], [25], we construct a map
(as shown in Fig. 9) of the gates in the racing tracks from

Fig. 8. Samples of the gate perception by PencilNet. The network can
distinguish a gate from objects with similar geometry such as the back of
another gate, or in extreme dark lighting.

Fig. 9.
the last raw estimation of the gate’s pose; while the green blocks represent the
estimations by an extended Kalman filter. The generated trajectory is shown
with red spheres.

Example of the constructed global map. The pink blocks represent
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the output of a perception network, which is a prediction
vector v = [éx Cy d OA} of a gate center pixel coordinates
(éz,¢&y), relative distance from the robot to the gate d, and
relative heading angle 0. Using the method of fish-eye back-
projection proposed in [25], one can obtain the pose of the
gate GG expressed in world frame W (wp¢) as follows:

“ T
cbo =D K [0, 4,1]

wPae = wPbD

0 0 1
4—(R‘1/7V)_1 (Rg)_1 -1 0 0| cpPc+ppPc
0 -1 0

“)
where W, D, and C are the world, drone’s body, and camera
coordinate frames, respectively. Rg expresses the transforma-
tion from frame A to frame B. D and K are the camera
distortion matrix and intrinsic matrix. In real-time flights, an
extended Kalman filter (EKF) is used for each detected gate
with prior knowledge of coarse gate locations within a radius
of six meters on the track, to correctly associate the prediction
values with a gate.

B. Motion Planning and Control

After the global pose of the next gate is estimated, a
minimum-snap trajectory is generated [35], [36] from the
drone’s current position to a perceived gate’s center with a
receding-horizon local planner that can replan if the estimation
of the next gate pose exceeds a threshold. The trajectory is
tracked by a geometric controller [37].

C. Real-Time Experiments

The vision-based autonomous navigation system is tested
in multiple scenarios with different track layouts and back-
grounds, as shown in Table III. The level of difficulties for
each track is reflected by the time window (7'), measured by
the average gate-to-gate distance and max drone speeds, in
which a perception network must predict a gate correctly, and
the controller reacts timely. The narrow tracks (Circular and S-
shape) have a shorter time window (7' = 1.6s and 7' = 1.16s)
so it is more difficult to navigate successfully. The 8-shape
track has a longer time window (7' = 3.25s). The illumination

TABLE III
SUCCESS RATES OF GATE CROSSING WITH VARIOUS TRACK LAYOUT AND
ILLUMINATION SETTINGS.

[ Lighting \
’ Method ‘ Track |~ pay [ N100 [ N0 | N-20 [ N0 |
PencilNet Circular, narrow 90% 100% 90% 60% 10%

(ours) 8-shape, wide 90% 100% 75% 40% 10%

) S-shape, narrow | 95% 90% 60% 10% | 10%
GateNet Circular, narrow 60% 100% 50% 30% 0%
[25] 8-shape, wide 25% 80% 12.5% 0% 0%
S-shape, narrow | 12.5% 90% 0% 0% 0%

DroNet-1.0 Circular, narrow 60% 60% 0% 30% 0%
[18] ’ 8-shape, wide 75% 70% 0% 0% 0%
S-shape, narrow 50% 60% 0% 0% 0%

DroNet-0.5 Circular, narrow 80% 60% 0% 0% 0%
[27] ’ 8-shape, wide 75% 80% 12.5% 0% 0%
S-shape, narrow 40% 60% 0% 0% 0%

settings of the test environment can be controlled using a led
lighting system at night and roof windows during the daytime.

The performance of two baseline methods, namely
GateNet [25] and DroNet-0.5 [18], are also reported due to
their similarities with our method and their decent speed of
inferences. In Table III, we report the success rate for gate
crossing for each scenario; while, in Fig. 10, the Euclidean er-
rors of each method are depicted. As the inner gate dimension
is around 1m, a deviation above 0.5m normally results in a
crash. Since the gates are predicted and then mapped globally,
the accuracy of the perception pipeline in the navigation task
is directly affected also by the accuracy of the state estimation,
which could drift significantly during high-speed flights under
degraded visual conditions. This partly explains the poor suc-
cess rates in the extreme lighting condition (N-20, N-10) for all
tested tracks using SLAM. However, the results still show that
compared to the similar perception pipeline in [25], the pencil
filter has significantly improved the accuracy of gate detection
in practice, especially in darker illumination settings, hence
consequently the overall success rate of the mission. Such
improvements are valuable in drone racing contests where
gates are placed in visually degraded conditions. Readers are
encouraged to watch the accompanying video for a detailed
review of the performance of the system.

'S

PencilNet (ours)
GateNet
DroNet-1.0
DroNet-0.5

w

%)

Euclidean position error [m]

=
%

Orientation error [rad]
- .

TL

100

N-10

N-40
Light intencity

Fig. 10. Euclidean position and orientation errors for the gate detection with
various illumination settings.

V. CONCLUSION

This work proposes PencilNet — a DNN method utilizing
morphological operation to improve both the sim-to-real trans-
fer learning capability and the robustness of the gate percep-
tion system even in extreme illumination settings. Through an
extensive evaluation study, PencilNet’s performance is shown
to significantly outperform state-of-the-art methods for both
sim-to-real transfer learning and robustness in detection. We
demonstrate the effectiveness of PencilNet in multiple real-
time autonomous racing scenarios under different lighting set-
tings that reflect realistic conditions. The system’s performance
can be improved by accounting for the drifts and degraded
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performance in state estimation in darker lighting, which
negatively affects the accuracy of the perception system.
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